# Fake News: Fundamental Theories, Detection Strategies and Challenges

Xinyi Zhou, Reza Zafarani, Kai Shu, Huan Liu.

**Tutorial** | 12th ACM International WSDM Conference









## Meet our Team



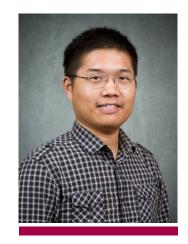
Xinyi Zhou Syracuse University

Ph.D. Student Data Lab, EECS Department



Reza Zafarani Syracuse University

> Assistant Professor Data Lab, EECS Department



#### Kai Shu Arizona State University

Ph.D. Student Computer science and Engineering



Huan Liu Arizona State University

Professor Computer Science and Engineering





# Introduction

- Research Background
- What is Fake News?
- Related Concepts
- Fundamental Theories





# Research Background

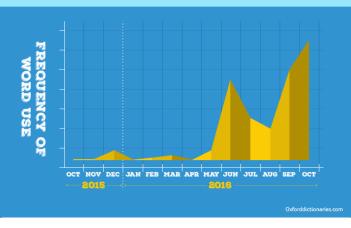
Why Study Fake News?

Fake news is now viewed as one of the greatest threats to democracy, justice, public trust, freedom of expression, journalism and economy.

- Political Aspects: May have had an impact on
  - "Brexit" referendum
  - 2016 U.S. presidential election
    - # Shares, reactions, and comments on Facebook.<sup>1</sup>
    - <u>8,711,000</u> for top 20 frequently-discussed **FAKE** election stories.
    - <u>7,367,000</u> for top 20 frequently-discussed **TRUE** election stories.
- Oxford Dictionaries international word of the year 2016:
  - **Post-Truth**: "Relating to or denoting circumstances in which objective facts are less influential in shaping public opinion than appeals to emotion and personal belief."



"POST-TRUTH" FREQUENCY



<sup>&</sup>lt;sup>1</sup>C. Silverman. This analysis shows how viral fake election news stories outperformed real news on Facebook. BuzzFeed News, 2016.



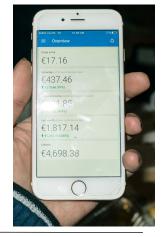


## Syracuse University

# Research Background

Why Study Fake News?

- Economic Aspects:
  - "Barack Obama was injured in an explosion" wiped out <u>\$130 billion in stock value.</u>1
  - Dozens of "well-known" teenagers in Veles, Macedonia<sup>2</sup>
    - Penny-per-click advertising
    - During U.S. 2016 presidential Elections
    - Earning at least \$60,000 in six months
    - Far outstripping their parents' income
    - Average annual wage in town: \$4,800

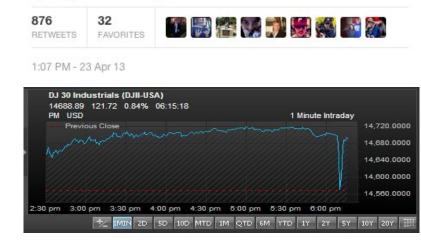




**⊥ •** Following

Breaking: Two Explosions in the White House and Barack Obama is injured

#### ← Reply 🔁 Retweet ★ Favorite ••• More



<sup>1</sup>K. Rapoza. Can 'fake news' impact the stock market? 2017.

<sup>2</sup>S. Subramanian, Inside the Macedonnian Fake News Complex https://www.wired.com/2017/02/veles-macedonia-fake-news/



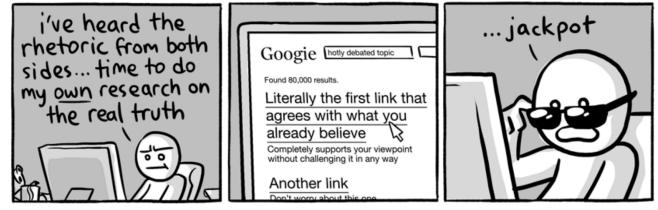


## Syracuse University

# Research Background

Why Study Fake News?

- Social/Psychological Aspects:
  - Humans have been proven to be irrational/vulnerable when differentiating between truth/false news
    - Typical accuracy in the range of 55-58%
  - For fake news, it is relatively easier to obtain public trust
  - Validity Effect: individuals tend to trust fake news after repeated exposures
  - Confirmation Bias: individuals tend to believe fake news when it confirms their pre-existing knowledge
  - Peer Pressure/Bandwagon Effect



CHAINSAWSUIT.COM



# Research Background

Why is Fake News attracting more public attention recently?

- Fake news can now be created and published faster and cheaper
- The rise of Social Media and its popularity also plays an important role
  - As of Aug. 2017, <u>67%</u> of Americans get their news from social media.<sup>3</sup>
- Social media accelerates fake news dissemination.
  - It breaks the physical distance barrier among individuals.
  - It provides rich platforms to share, forward, vote, and review to encourage users to participate and discuss online news.
- Social media accelerates fake news evolution.
  - Echo chamber effect: biased information can be amplified and reinforced within the social media.<sup>4</sup>
  - Echo Chamber: a situation in which beliefs are amplified or reinforced by communication and repetition inside a closed system

<sup>4</sup>K. Jamieson and J. Cappella. Echo Chamber: Rush Limbaugh and the Conservative Media Establishment. Oxford University Press, 2008.



Jonny opened the door to the one place he always heard the truth.

<sup>&</sup>lt;sup>3</sup>http://www.journalism.org/2017/09/07/news-use-across-social-media-platforms-2017/





# Fake News & Related Concepts

Definition of fake news

- Fake news is *intentionally* and verifiably *false* news published by a *news* outlet.
- Authenticity: False
- Intention: Bad
- News or not? News

## A more broad definition:

• Fake news is false news

Pope Francis Shocks World, Endorses Donald Trump for President, Releases Statement

TOPICS: Pope Francis Endorses Donald Trump





BREAKING: Obama And Hillary Now Promising Amnesty To Any Illegal That Votes Democrat

Posted by Alex Cooper | Nov 8, 2016 | Breaking News



All Begals New Being Gover Annexy Far Onnan Koted

|                | Authenticity | Intention | News?   |
|----------------|--------------|-----------|---------|
| Fake news      | False        | Bad       | Yes     |
| False news     | False        | Unknown   | Yes     |
| Satire news    | Unknown      | Not bad   | Yes     |
| Disinformation | False        | Bad       | Unknown |
| Misinformation | False        | Unknown   | Unknown |
| Rumor          | Unknown      | Unknown   | Unknown |

For example, disinformation is false information [news or non-news] with a bad intention aiming to mislead the public.



 wen't
 Image: Click click

Kim Jong-Un Named *The Onion*'s Sexiest Man Alive For 2012 [UPDATE] NEWS · North Korea · Lifestvie · ISSUE 48·46 · Nov 14, 2012



# Fake News & Related Concepts

Distinguishing fake news from other related concepts

#### Open Problems:

- How similar are writing styles or propagation patterns?
- Can we use the same detection strategies?
- Can we distinguish between them? E.g., fake news from satire news



# Fundamental Theories

Why is it necessary to study Fundamental Theories?

**Fundamental human cognition and behavior theories** developed <u>across various</u> <u>discipline</u> such as psychology, philosophy, social science, and economics provide invaluability insights for fake news studies.

- Pro e opportunities for qualitative and quantitative studies of <u>big fake news data;</u>
- 2. S rt to build **well-justified and explaina 'e models** for fake news detection and ention; and

[Udo] Undeutsch hypothesis: A statement based on a factual experience differs in content and quality from that of fantasy.

<u>Verification</u>: Is a **fake news** article differs in **content and quality** from the truth? l tri

Utilizing: How to **detect fake news** based on its **content style and quality**?

1.

'n

|             | Term        | Phenomenon                                                  |
|-------------|-------------|-------------------------------------------------------------|
|             | Undeutsch   | A statement based on a factual experience differs in        |
| sed         | hypothesis  | <b>content and quality</b> from that of fantasy             |
| bas         | Reality     | Actual events are characterized by higher levels of         |
| Style-based | monitoring  | sensory-perceptual information.                             |
| Sty         | Four-factor | Lies are expressed differently in terms of arousal,         |
|             | theory      | behavior control, <b>emotion</b> , and thinking from truth. |

## Style-Based Fundamental Theories

Studying fake news from a style perspective, i..e, how it's written

|                       | Term                 | Phenomenon                                                                                    |
|-----------------------|----------------------|-----------------------------------------------------------------------------------------------|
| on-                   | Backfire effect      | Given evidence against their beliefs, individuals<br>can reject it even more strongly         |
| Propagation-<br>based | Conservatism<br>bias | The tendency to revise one's belief insufficiently when presented with new evidence.          |
| Pro                   | Semmelweis<br>reflex | Individuals tend to reject new evidence as it contradicts with established norms and beliefs. |

#### "Fake news is incorrect but hard to correct"<sup>5</sup>

It is difficult to correct users' perceptions after fake news has gained their trust.

#### Fake News Early Detection!

Providing a solid foundation for epidemic models

Propagation-based Fundamental Theories

Studying fake news based on how it spreads

<sup>&</sup>lt;sup>5</sup>A. Roets, et al. 'Fake news': Incorrect, but hard to correct. The role of cognitive ability on the impact of false information on social impressions. Intelligence, 2017.

|                           |                               | Term                           | Phenomenon                                                                              |  |
|---------------------------|-------------------------------|--------------------------------|-----------------------------------------------------------------------------------------|--|
|                           |                               | Attentional bias               | <b>Exposure frequency -</b> individuals tend to                                         |  |
|                           |                               | Validity effect                | believe information is correct after repeated                                           |  |
| Role                      | al<br>1ce                     | Echo chamber effect            | exposures.                                                                              |  |
| [ pu                      | Social<br>nfluence            | Bandwagon effect               | Peer pressure - individuals do something                                                |  |
| nt a                      | S<br>inf                      | Normative influence theory     | primarily because others are doing it and to                                            |  |
| eme                       |                               | Social identity theory         | conform to be liked and accepted by others.                                             |  |
| rage                      |                               | Availability cascade           |                                                                                         |  |
| er's Engagement and Role) | Self-<br>influence            | Confirmation bias              | Preexisting knowledge - individuals tend to                                             |  |
|                           |                               | Illusion of asymmetric insight | trust information that confirms their                                                   |  |
| (User's                   | Self-<br>nfluen               | Naïve realism                  | preexisting beliefs or hypotheses, which they perceive to surpass that of others.       |  |
| _                         | .1                            | <b>O</b> verconfidence effect  | perceive to surpass that or others.                                                     |  |
| Jser-based                | e                             | Prospect theory                | Loss and gains preference - people make                                                 |  |
| ser-                      | Benefit<br>nfluence           | Valence effect                 | decisions based on the value of losses and                                              |  |
| Ϊ<br>Ω                    | Valence effectContrast effect |                                | gains rather than the outcome, and they tend<br>to overestimate the likelihood of gains |  |
|                           | I<br>In                       |                                | happening rather than losses.                                                           |  |

# User-based Fundamental Theories

Studying fake news from a perspective of users: How users engage with fake news and the role users play (or can play) in fake news creation, propagation, or intervention





# Fake News Detection

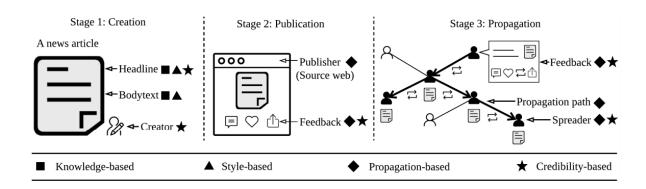
- Knowledge-based Fake News Detection
- Style-based Fake News Detection
- Propagation-based Fake News Detection
- Credibility-based Fake News Detection
- Fake News Datasets & Tools





# Fake News Detection

- Knowledge-based Fake News Detection
- Style-based Fake News Detection
- Propagation-based Fake News Detection
- Credibility-based Fake News Detection
- Fake News Datasets & Tools







# Knowledge-based Fake News Detection

Knowledge-based fake news detection aims to assess <u>news authenticity</u> by comparing the **knowledge** extracted from to-be-verified <u>news content</u> with known facts (i.e., true knowledge).

## It is also known as **fact-checking**.

- *Manual Fact-checking* providing ground truth.
- Automatic Fact-checking a better choice for scalability.





# Knowledge-based Fake News Detection

Knowledge-based fake news detection aims to assess <u>news authenticity</u> by comparing the **knowledge** extracted from to-be-verified <u>news content</u> with known facts (i.e., true knowledge).

## It is also known as fact-checking.

- Manual Fact-checking providing ground truth.
- Automatic Fact-checking a better choice for scalability.



### Syracuse University

# Manual Fact-checking

Classification and comparison

|                                       | Expert-based<br>manual fact-checking | Crowd-sourced<br>manual fact-checking     |
|---------------------------------------|--------------------------------------|-------------------------------------------|
| Fact-checker(s)                       | One or several<br>domain-expert(s)   | A large population of regular individuals |
| Easy to manage?                       | Yes                                  | No                                        |
| Credibility                           | High                                 | Comparatively low                         |
| Scalability                           | Poor                                 | Comparatively high                        |
| Current resources<br>(e.g., websites) | Rich                                 | Comparatively poor                        |

E.g., political bias and conflicting annotations of fact-checkers





0000

#### Expert-based Manual Fact-checking Multilabel Binary Current resources classification classification **Topics Covered Content Analyzed Assessment Labels** PolitiFact True; Mostly true; Half true; Mostly false; False; American politics Statements Pants on fire One pinocchio; Two pinocchio; Three pinoc-Washington Statements and claims The American po-**Post Fact Checker** chio; Four pinocchio; The Geppetto checkmark; An upside-down Pinocchio; Verdict pending FactCheck True: No evidence; False American politics TV ads, debates, speeches, Donald Trump's file interviews and news Republican from New York True; Mostly true; Mixius, Mostly false; False; Politics and other social and News articles and videos Snopes Donald Trump was elected the 45th president of the United States on Nov. 8, 2016. He has been a real estate developer, entrepreneur and host of the NBC topical issues Unproven; Outdated; Miscaptioned; Con reality show, "The Apprentice." Trump's statements were awarded PolitiFact's 2015 Lie of the Year. Born and raised in New York City, Trump is married to tribution; Misattributed; Scam; Legend Melania Trump, a former model from Slovenia. Trump has five children and eight grandchildren. Three of his children, Donald Jr., Ivanka, and Eric, serve as TruthOrFiction Politics, religion, nature, **Email rumors** Truth; Fiction; etc. executive vice presidents of the Trump Organization. aviation, food, medical, etc. The PolitiFact scorecard FullFact Economy, health, education, Articles Ambiguity (no clear labels) True crime, immigration, law Mostly Tru Half True HoaxSlayer Articles and me Hoaxes, scams, malware, bogus warning, fake Ambiguity ges Mostly False False news, misleading, true, humour, spams, etc. Pants on Fire Multiacross domains modal

X. Zhou, R. Zafarani, K. Shu, H. Liu

83 (15%)

118 (22%)

73 (32%)



## Expert-based Manual Fact-checking

Current resources

#### Reporters Lab – Duke University

X. Zhou, R. Zafarani, K. Shu, H. Liu

https://reporterslab.org/fact-checking/

| <b>F</b> ıskkit                  |
|----------------------------------|
| A better way to discuss the news |
| Paste article link here          |

Take an online article that you want to comment on, copy and paste the link into Fiskkit. This allows you to input the article into our system for you to comment on.

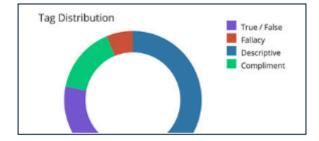
| TRUE/FALSE        | FALLACY         |
|-------------------|-----------------|
| True              | Overly General  |
| False             | Cherry Picking  |
| Matter of Opinion | Straw Man       |
| DESCRIPTIVE       | COMPLIMENTARY   |
| Unsupported       | Insightful      |
| Overly Simplistic | Well Researched |
| Biased Wording    | Funny           |

2

Rate any sentence inside the article by clicking on a sentence & choosing tags that best describe it. Add comments to support your arguments.



OR Click on an article you find interesting.



3 See how the article has been rated by other people through our insights page. Share the article so that your friends can come comment too.

http://www.fiskkit.com/

## Crowd-sourced Manual Fact-checking

Current resources



|  |                 |              |      | -•     |  |
|--|-----------------|--------------|------|--------|--|
|  |                 |              |      |        |  |
|  | <b>PROJECTS</b> | PUBLICATIONS | NEWS | EVENTS |  |

**Text Thresher** 



0

Text Thresher improves the social science practice of content analysis, making it vastly more transparent and scalable to hundreds of thousands of documents. Text Thresher is a web-interface operating in citizen science and crowd working environments like CrowdCrafting. The interface allows researchers to clearly specify hand-labeling and text classification tasks in a user-friendly workflow that maximizes crowd worker accuracy and efficiency. As citizen scientists or crowd workers label and extract data from thousands of documents using Text Thresher, they simultaneously generate training sets enabling machine learning algorithms to augment or replace researchers' and crowd workers' efforts. Output is ready for a range of computational text analysis techniques and viewable as labels layered over original document text. Text Thresher is free and open source and will be ready for use by the broader research community in the late 2017.



A. Zhang, et al. A structured response to misinformation: Defining and annotating credibility indicators in news articles. WWW'18 Companion

#### X. Zhou, R. Zafarani, K. Shu, H. Liu

Crowd-sourced Manual Fact-checking

Current resources





# Knowledge-based Fake News Detection

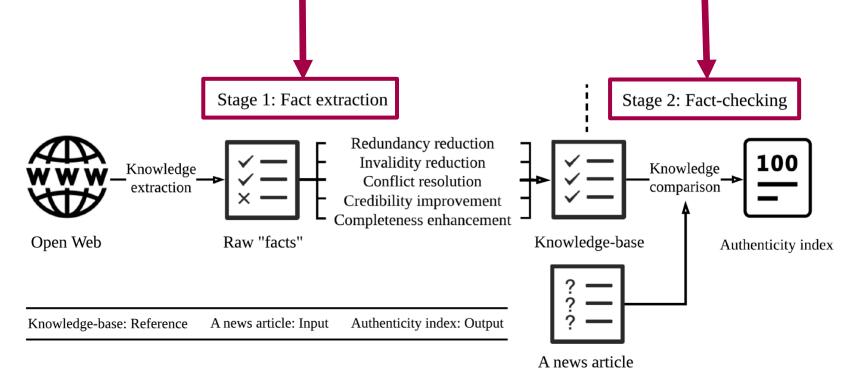
Knowledge-based fake news detection aims to assess <u>news authenticity</u> by comparing the **knowledge** extracted from to-be-verified <u>news content</u> with known facts (i.e., true knowledge).

## It is also known as fact-checking.

- Manual Fact-checking providing ground truth.
- Automatic Fact-checking a better choice for scalability.

It aims to assess news authenticity by comparing the knowledge extracted from to-be-verified news content with known facts (i.e., true knowledge).

- How to represent "knowledge"?
- How to obtain **the known facts** (i.e., ground truth)?
- How to **compare** the knowledge extracted with known facts?



# Automatic Fact-checking

#### Overview

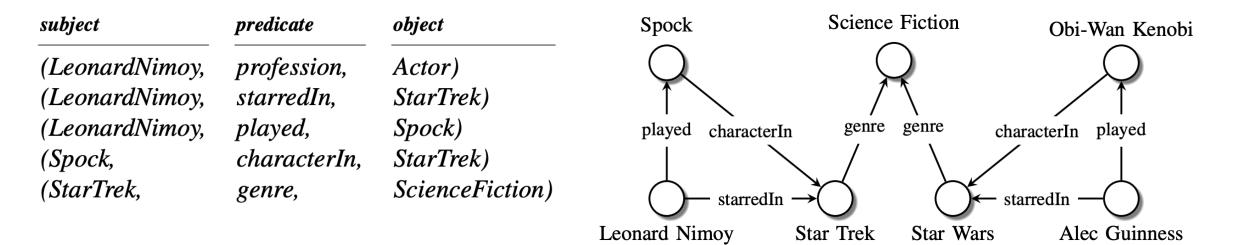




# Knowledge Representation

Knowledge is represented as a set of (Subject, Predicate, Object) (SPO) triples extracted from the given information. For example,

"Leonard Nimoy was an actor who played the character Spock in the science-fiction movie Star Trek"



X. Zhou, R. Zafarani, K. Shu, H. Liu



### Syracuse University

## Stage 1. Fact Extraction

Constructing knowledge graph to obtain the known facts

<u>Types</u> of Web content that contain relational information and can be utilized for knowledge extraction by different extractors: **text, tabular data, structured pages** and **human annotations.**<sup>6</sup> <u>Source(s):</u>

- Single-source knowledge extraction
  - Rely on one comparatively reliable source (e.g., Wiki)
  - Efficient  $\mathbf{1}$ , Knowledge completeness  $\mathbf{1}$
- Open-source knowledge extraction
  - Fuse knowledge from distinct knowledge
  - Efficient I, Knowledge completeness



<sup>&</sup>lt;sup>6</sup>X. Dong, et al.. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. KDD'14

#### T1: Entity Resolution (deduplication/record linkage) to reduce redundancy

- To identify mentions that refer to the same real-world entity, e.g., (DonaldJohnTrump, profession President) & (DonaldTrump, profession, President) should be a redundant pair.
- Current techniques are often distance- or dependence-based.
- Often expensive (requires pairwise distance) computation
- Blocking/Indexing can be used to deal with complexity

#### T2: Time Recording to remove outdated knowledge

- E.g., (Britain, joinIn, EuropeanUnion) has been outdated.
- Use Compound Value Type (CVT): facts having beginning and end dates
- Timeliness studies are limited

T3: Knowledge Fusion to handle conflicts (often in open-source knowledge extraction)

- E.g., (DonaldTrump, bornIn, NewYorkCity) & (DonaldTrump, bornIn, LosAngeles) are a conflicting pair.
- Fix by having support values for facts (e.g., website credibility), or using ensemble methods
- Often correlated to (T4).

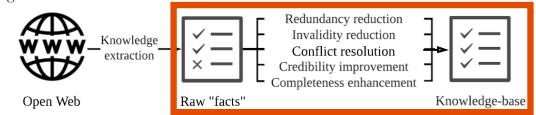
T4: Credibility Evaluation to improve the credibility of knowledge

- E.g., The knowledge extracted from The Onion<sup>7</sup>.
- Often focus on analyzing the source website(s).

<sup>7</sup>A https://www.theonion.com/ X. Zhou, R. Zafarani, K. Shu, H. Liu

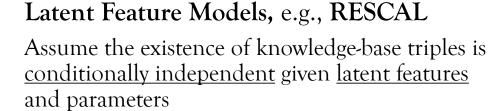
# Stage 1. Fact Extraction

Constructing knowledge graph to obtain the known facts



T5: *Knowledge Inference/Link Prediction* to infer new facts based on known ones

• Knowledge extracted from online resources, particularly, using a single source, are far from complete.



Relation machine learning

### Graph Feature Models, e.g., PRA

Assume the existence of triples is <u>conditionally</u> independent given observed graph features and parameters

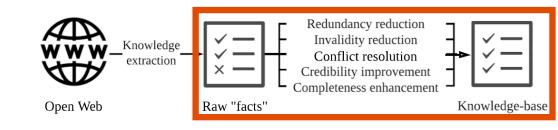
### Markov Random Field (MRF) Models

Assume the existing triples have local interactions

M. Nickel, et al. A Review of Relational Machine Learning for Knowledge Graphs, Proceedings of the IEEE, 2016

# Stage 1. Fact Extraction

Constructing knowledge graph to obtain the known facts





# Stage 1. Fact Extraction

Existing Knowledge Graphs

| Name                 |
|----------------------|
| Knowledge Vault (KV) |
| DeepDive [32]        |
| NELL [8]             |
| PROSPERA [30]        |
| YAGO2 [19]           |
| Freebase [4]         |
| Knowledge Graph (KG) |

Table 1: Comparison ofFreebase and KG rely orfacts means with a prot

<sup>a</sup>Ce Zhang (U Wisconsin), private communication

<sup>b</sup>Bryan Kiesel (CMU), private communication

<sup>c</sup>Core facts, http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html

<u>Open issues</u>:

<sup>d</sup>This is the number of non-redundant base triples, excluding reverse predicates and "lazy" triples derived from flattening CVTs (complex value types).

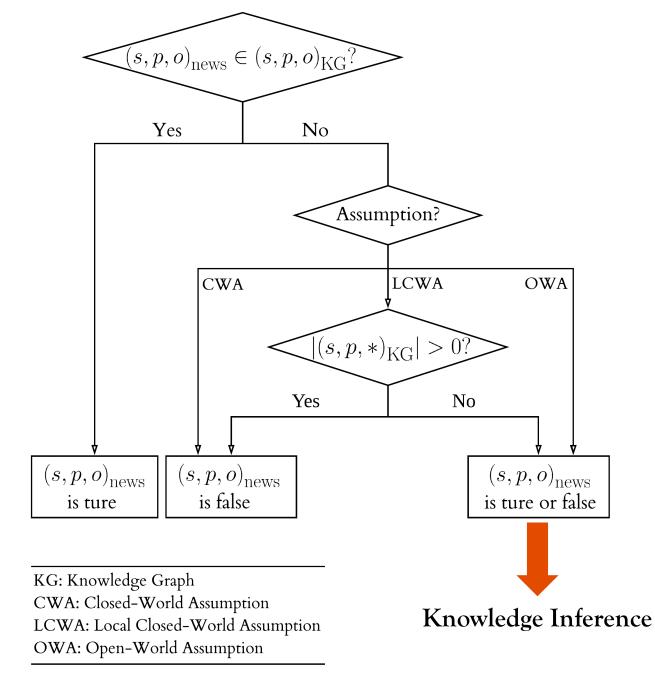
1. Timeliness & Completeness of Knowledge Graphs

Knowledge Bases, WWW tutorial, 2018.

Domain-specific Knowledge Graphs for Fake News Detection

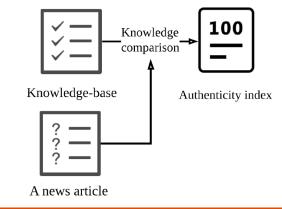
Related tutorial: X. Ren, et al., Scalable Construction and Querying of Massive

<sup>e</sup>http://insidesearch.blogspot.com/2012/12/get-smarter-answers-from-knowledge\_4.html



## Stage 2. Fact-checking

Comparing knowledge between news articles and knowledge graphs



Shortest path-based method:

By finding the **shortest path** between concept nodes under properly defined **semantic proximity** metrics on knowledge graphs

 $\tau(e) = \max \mathcal{W}(P_{s,o}).$ 

$$\mathcal{W}(P_{s,o}) = \mathcal{W}(v_1 \dots v_n) = \left[1 + \sum_{i=2}^{n-1} \log k\left(v_i\right)\right]^{-1}$$

An alternative formulation (widest bottleneck)

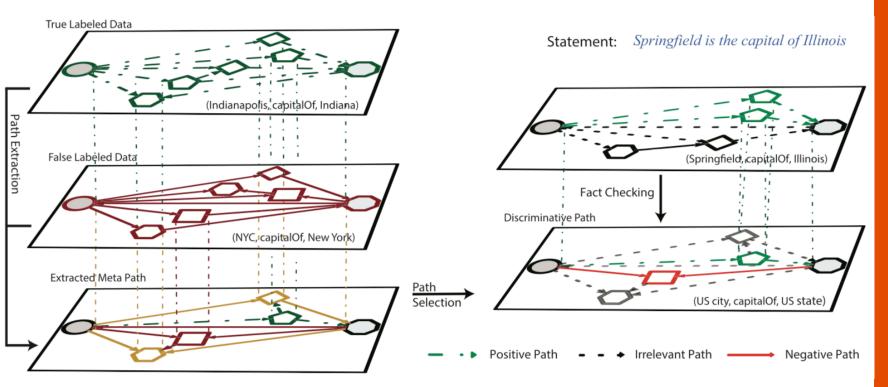
$$\mathcal{W}_{u}(P_{s,o}) = \mathcal{W}_{u}(v_{1} \dots v_{n}) = \begin{cases} 1 & n = 2\\ \left[1 + \max_{i=2}^{n-1} \left\{ \log k\left(v_{i}\right) \right\} \right]^{-1} & n > 2. \end{cases}$$
 Islam (1,599)

G. Ciampaglia, et al. Computational Fact Checking from Knowledge Networks, 2016

Amer

## Stage 2. Fact-checking Knowledge Inference for unknown SPO triples: Illustrated studies

Discriminative path-based method:



## Stage 2. Fact-checking Knowledge Inference for unknown SPO triples: Illustrated studies

B. Shi and T. Weninger, Discriminative predicate path mining for fact checking in knowledge graphs, 2015





# Knowledge Inference

Comparison

Knowledge inference can be conducted on both Stage I, when constructing knowledge graphs, and Stage II for fact-checking.

| Stage<br>Operation | Knowledge Graph Construction                                                  | Fact-checking                                                                      |
|--------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Entity/Node        | Few operations on entities                                                    | Generally requires <i>additional</i> operations on entities, e.g., entity matching |
| Relationship/Edge  | Inference targets relationships<br>between <i>each pair of</i> given entities | Inference only targets relationships among <i>partial</i> entities                 |





# Fake News Detection

- Knowledge-based Fake News Detection
- Style-based Fake News Detection
- Propagation-based Fake News Detection
- Credibility-based Fake News Detection
- Fake News Datasets & Tools





# Style-based Fake News Detection

**Style-based Fake News Detection** is able to assess <u>news intention</u> by comparing the *writing style* extracted from to-be-verified *news content* with fake news style.

Fake News Style is a set of <u>machine learning features</u> that can well represent fake news and differentiate fake news from truth.

- Textual (linguistic) style features
- Visual style features

- Manually select features → Often within a supervised machine learning framework
- Automatically select features → Often within a *deep* machine learning framework





# Style-based Fake News Detection

**Style-based Fake News Detection** is able to assess <u>news intention</u> by comparing the *writing style* extracted from to-be-verified *news content* with fake news style.

Fake News Style is a set of <u>machine learning features</u> that can well represent fake news and differentiate fake news from truth.

- Textual (linguistic) style features
- Visual style features



"More people watched President Trump's 2019 State of the Union address on television than watched Super Bowl Super Bowl LlII"





Structure-based language features

| Level     | Feature(s)                   | Technique(s) and Tool(s)                            | Reference(s)                                          |  |  |
|-----------|------------------------------|-----------------------------------------------------|-------------------------------------------------------|--|--|
|           |                              | Bag of words                                        |                                                       |  |  |
| Lexicon   | Words                        | + n-gram to capture the word sequence               | Perez-Rosas et al., 2017                              |  |  |
|           |                              | + TF-IDF to unify the content length                |                                                       |  |  |
| S         | Part-Of-Speech (POS) Tags    | POS Taggers                                         | Feng et al., 2012<br>Petrov and Klein, 2007           |  |  |
| Syntax    | Context-Free Grammars (CFGs) | Probabilistic Context Free Grammars (PCFGs) Parsers |                                                       |  |  |
| Semantic  | Psycholinguistic Words       | Linguistic Inquiry and Word Count (LIWC)            | Perez-Rosas et al., 2017                              |  |  |
| Discourse | Rhetorical Relationships     | Rhetorical Structure Theory (RST) Parser            | Rubin and Lukoianova, 2015<br>Ji and Eisenstein, 2014 |  |  |





### "The rat ate the cheese"

Structure-based language features

| Level     | Feature(s)               | Technique(s) and To     | Reference(s)             |                                                       |  |  |  |
|-----------|--------------------------|-------------------------|--------------------------|-------------------------------------------------------|--|--|--|
|           |                          | Bag of words            |                          |                                                       |  |  |  |
| Lexicon   | Words                    | + n-gram to capture t   | Perez-Rosas et al., 2017 |                                                       |  |  |  |
|           |                          |                         |                          |                                                       |  |  |  |
| Constant  | Part-Of-Speech (P ags    | Taggers Feng et al., 20 |                          | Feng et al., 2012                                     |  |  |  |
| Syntax    | Co "the": 2 "rat": 1     | 2("ate"   "rat") = ?    | Petrov and Klein, 2007   |                                                       |  |  |  |
| Semantic  |                          |                         | d Word Count (LIWC)      | Perez-Rosas et al., 2017                              |  |  |  |
| Discourse | Rhetorical Relationships | Rhetorical Structure    | Theory (RST) Parser      | Rubin and Lukoianova, 2015<br>Ji and Eisenstein, 2014 |  |  |  |





Structure-based language features

"The rat ate the cheese"

NP

NN

cheese

| Level                                  | Feature           | e(s)                                                                                               | Technique(s) and                                                       | d To   |     |       | S   |       |   |   |  |    |
|----------------------------------------|-------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------|-----|-------|-----|-------|---|---|--|----|
|                                        |                   |                                                                                                    | Bag of words                                                           |        |     |       |     |       |   |   |  |    |
| Lexicon                                | Word              | Words                                                                                              |                                                                        | Words  |     | Words |     | ure t | N | P |  | VP |
|                                        |                   |                                                                                                    | + TF-IDF to unif                                                       | fy the |     |       |     |       |   |   |  |    |
| Com to a                               | Part-Of-Speech    | (POS) Tags                                                                                         | POS Taggers                                                            |        | DT  | NN    | VB  |       |   |   |  |    |
| Syntax                                 | Context-Free Gran | pamars (CFGs)                                                                                      | Probabilistic Con                                                      | ntext  |     |       |     |       |   |   |  |    |
| Semantic                               | Perianguist       | words                                                                                              | Linguistic Inqui                                                       | ry an  | the | rat   | ate | DT    |   |   |  |    |
| NN: 2 ("ra<br>DT: 1 ("th<br>VB: 1 ("at | e") V<br>e") N    | $S \rightarrow NP VP$<br>$VP \rightarrow VB NP$<br>$NN \rightarrow rat$<br>$NN \rightarrow cheese$ | NP $\rightarrow$ DT NN<br>DT $\rightarrow$ the<br>VB $\rightarrow$ ate | ture ' |     |       |     | the   |   |   |  |    |

## Textual (Linguistic) S

Structure-based language features

| Level     | Feature(s)                   |
|-----------|------------------------------|
| Lexicon   | Words                        |
| S-m to    | Part-Of-Speech (POS) Tags    |
| Syntax    | Context-Free Grammars (CFGs) |
| Semantic  | Psycholinguistic Words       |
| Discourse | Rhetorical Relationships     |

|                            |           |                      |    | Category               | Abbrev            | Examples                               |  |
|----------------------------|-----------|----------------------|----|------------------------|-------------------|----------------------------------------|--|
| Category                   | Abbrev    | Examples             |    |                        |                   |                                        |  |
| Word count                 | WC        | -                    |    | Friends                | friend            | buddy, neighbor                        |  |
| Summary Language Variables |           |                      |    | Female references      | female            | girl, her, mom                         |  |
| Analytical thinking        | Analytic  | -                    |    | Male references        | malo              | boy his dad                            |  |
| Clout                      | Clout     | -                    |    | Cognitive processes    | cogproc           | cause, know, ought                     |  |
| Authentic                  | Authentic | -                    |    | Insight                | insight           | think, know                            |  |
| Emotional tone             | Tone      | -                    |    | Causation              | cause             | because, effect                        |  |
| Words/sentence             | WPS       | -                    |    | Discrepancy            | discrep           | should, would                          |  |
| Words > 6 letters          | Sixltr    | -                    |    | Tentative<br>Certainty | tentat<br>certain | maybe, perhaps<br>always, never        |  |
| Dictionary words           | Dic       | -                    |    | Differentiation        | differ            | hasn't, but, else                      |  |
| Linguistic Dimensions      | Die       | -                    |    | Perceptual processes   | percept           | look, heard, feeling                   |  |
| Total function words       | funct     | it to no very        |    | See                    | see               | view, saw, seen                        |  |
|                            |           |                      |    | Hear                   | hear              | listen, hearing                        |  |
| Total pronouns             | pronoun   | I, them, itself      |    | Feel                   | feel              | feels, touch                           |  |
| Personal pronouns          | ppron     | I, them, her         | Η. | Biological processes   | bio               | eat, blood, pain                       |  |
| 1st pers singular          | 1         | I, me, mine          |    | Body                   | body              | cheek, hands, spit                     |  |
| 1st pers plural            | we        | we, us, our          |    | Health                 | health            | clinic, flu, pill                      |  |
| 2nd person                 | you       | you, your, thou      |    | Sexual                 | sexual            | horny, love, incest                    |  |
| 3rd pers singular          | shehe     | she, her, him        |    | Ingestion              | ingest            | dish, eat, pizza                       |  |
| 3rd pers plural            | they      | they, their, they'd  |    | Drives                 | drives            |                                        |  |
| Impersonal pronouns        | ipron     | it, it's, those      |    | Affiliation            | affiliation       | ally, friend, social                   |  |
| Articles                   | article   | a, an, the           | •  | Achievement            | achieve           | win, success, better                   |  |
| Prepositions               | prep      | to, with, above      |    | Power                  | power             | superior, bully                        |  |
| Auxiliary verbs            | auxverb   | am, will, have       |    | Reward                 | reward            | take, prize, benefit<br>danger, doubt  |  |
| Common Adverbs             | adverb    | very, really         |    | Time orientations      | TimeOrient        | danger, doubt                          |  |
| Conjunctions               | conj      | and, but, whereas    |    | Past focus             | focuspast         | ago, did, talked                       |  |
| Negations                  | negate    | no, not, never       |    | Present focus          | focuspresent      | today, is, now                         |  |
| Other Grammar              |           |                      |    | Future focus           | focusfuture       | may will soon                          |  |
| Common verbs               | verb      | eat, come, carry     |    | Relativity             | relativ           | area, bend, exit                       |  |
| Common adjectives          | adj       | free, happy, long    |    | Motion                 | motion            | arrive, car, go                        |  |
| Comparisons                | compare   | greater, best, after |    | Space                  | space             | down, in, thin                         |  |
| Interrogatives             | interrog  | how, when, what      |    | Time                   | time              | end, until, season                     |  |
| Numbers                    | number    | second, thousand     |    | Personal concerns      |                   |                                        |  |
| Ouantifiers                | quant     | few, many, much      |    | Work<br>Leisure        | work              | job, majors, xerox                     |  |
| Psychological Processes    |           |                      |    | Home                   | leisure<br>home   | cook, chat, movie<br>kitchen, landlord |  |
| Affective processes        | affect    | happy, cried         |    | Money                  | money             | audit, cash, owe                       |  |
| Positive emotion           | posemo    | love, nice, sweet    |    | Religion               | relig             | altar, church                          |  |
| Negative emotion           |           | hurt, ugly, nasty    |    | Death                  | death             | bury, coffin, kill                     |  |
|                            | negemo    | worried, fearful     |    | Informal language      | informal          | oury, comm, and                        |  |
| Anxiety                    | anx       |                      |    | Swear words            | swear             | fuck, damn, shit                       |  |
| Anger                      | anger     | hate, kill, annoyed  |    | Netspeak               | netspeak          | btw, lol, thx                          |  |
| Sadness<br>Sacial announce | sad       | crving grief sad     |    | Assent                 | assent            | agree, OK, yes                         |  |
| Social processes           | social    | mate, talk, they     | _  | Nonfluencies           | nonflu            | er, hm, umm                            |  |
| Family Screenshot          | family    | daughter, dad, aunt  |    | Fillers                | filler            | Imean, youknow                         |  |

X. Zhou, R. Zafarani, K. Shu, H. Liu





Structure-based language features

| Level     | Feature(s)                   |                                           |                                       |                      |
|-----------|------------------------------|-------------------------------------------|---------------------------------------|----------------------|
| Lexicon   | Words                        |                                           | Contrast                              |                      |
| C         | Part-Of-Speech (POS) Tags    |                                           |                                       | However, I prefer to |
| Syntax    | Context-Free Grammars (CFGs) |                                           |                                       | drive my 1999 Toyo   |
| Semantic  | Psycholinguistic Words       | Elabor                                    | ration                                |                      |
| Discourse | Rhetorical Relationships     |                                           |                                       |                      |
|           |                              | I love to collect<br>classic automobiles. | My favorite car<br>is my 1899 Duryea. |                      |

|               | Level(s)                          | Feature(s)                  | [Ott et al. 2011]   | [Feng et al. 2012a]  | [Shojaee et al. 2013] | [Mukherjee et al. 2013b] | [Li et al. 2014] | [Pérez-Rosas and Mihalcea 2014] | [Pérez-Rosas et al. 2015] | [Pérez-Rosas and Mihalcea 2015] | [Li et al. 2017b]           | [Ott et al. 2011]   | [Shojaee et al. 2013] | [Li et al. 2014] | [Pérez-Rosas et al. 2015] | [Abouelenien et al. 2017] | [Braud and Søgaard 2017] | [Pérez-Rosas et al. 2015] |
|---------------|-----------------------------------|-----------------------------|---------------------|----------------------|-----------------------|--------------------------|------------------|---------------------------------|---------------------------|---------------------------------|-----------------------------|---------------------|-----------------------|------------------|---------------------------|---------------------------|--------------------------|---------------------------|
| Within Levels | Lexicon                           | UG<br>BG<br>UG+BG<br>Others | .884<br><u>.896</u> | .729<br>.708<br>.738 | .810                  | <u>.663</u><br>.661      | <u>.668</u>      | <u>.691</u>                     | .609                      | <u>.695</u>                     | <u>.825</u><br>.804<br>.637 | .884<br><u>.889</u> | .700                  | .645             | <u>.763</u>               | <u>.585</u>               | <u>.717</u><br>.696      | <u>.678</u>               |
| hin L         | Syntax                            | POS<br>CFG                  | .730                | .742                 |                       | .564                     | .638             |                                 | <u>.695</u><br>.654       |                                 |                             |                     |                       | .690             |                           | .513<br>.513              | .717                     |                           |
| Vit           |                                   | Others                      | .768                | <u></u>              | .760                  |                          |                  |                                 |                           | .525                            |                             |                     | .690                  |                  | .627                      | .010                      |                          | .534                      |
| -             | Semantic                          | LIWC                        |                     |                      |                       |                          | .633             | .691                            | .602                      | .534                            |                             |                     |                       | .695             | .500                      | .504                      |                          | .661                      |
|               | Discourse                         | RR                          |                     |                      |                       |                          |                  |                                 |                           |                                 |                             |                     |                       |                  |                           |                           | .553                     |                           |
|               |                                   | UG+POS                      |                     | .733                 |                       |                          |                  |                                 |                           |                                 | .831                        |                     |                       |                  |                           |                           |                          |                           |
|               |                                   | UG+CFG                      |                     | .769                 |                       |                          |                  |                                 |                           |                                 |                             |                     |                       |                  |                           |                           |                          |                           |
|               | Lexicon +                         | BG+POS                      |                     |                      |                       | .664                     |                  |                                 |                           |                                 | .808                        |                     |                       |                  |                           |                           |                          |                           |
| els           | Syntax                            | BG+CFG                      |                     |                      |                       | .659                     |                  |                                 |                           |                                 |                             |                     |                       |                  |                           |                           |                          |                           |
| ev            |                                   | UG+BG+POS                   |                     |                      |                       |                          |                  |                                 |                           |                                 |                             |                     |                       |                  |                           |                           | .760                     |                           |
| I ss I        |                                   | Others+Others               |                     |                      | .840                  |                          |                  |                                 |                           |                                 |                             |                     | .740                  |                  |                           |                           |                          |                           |
| Across Levels | Lexicon +                         | UG+LIWC                     |                     |                      |                       |                          |                  |                                 | .622                      |                                 |                             |                     |                       |                  |                           | .594                      |                          |                           |
| Ac            | Semantic                          | BG+LIWC                     | .898                |                      |                       | .661                     |                  |                                 |                           |                                 |                             |                     |                       |                  |                           |                           |                          |                           |
|               | Lexicon +<br>Syntax +<br>Semantic | UG+POS+<br>LIWC             |                     |                      |                       |                          |                  |                                 |                           | .653                            |                             |                     |                       |                  | .636                      |                           |                          | .576                      |

Textual (Linguistic) Style of Fake News Performance of structure-based language features

UG: Unigram BG: Bigram POS: Part-of-Speech tags CFG: Context-Free Grammar (particularly refers to lexicalized production rules) LIWC: Linguistic Inquiry and Word Count RR: Rhetorical Relations





### Textual (Linguistic) Style of Fake News Attribute-based language features

- Most related studies belong to the general area of **Deception Detection**.
- Deception is disinformation, including fake statements, fake reviews, <u>fake news</u>, etc.
- Attributes are generally inspired from forensic psychological theories, e.g.,

| Term                 | Phenomenon                                                                                                                |
|----------------------|---------------------------------------------------------------------------------------------------------------------------|
| Undeutsch hypothesis | A statement based on a factual experience differs in content and <b>quality</b> from that of fantasy                      |
| Reality monitoring   | <u>Actual events</u> are characterized by higher levels of <b>sensory-perceptual</b> information.                         |
| Four-factor theory   | <u>Lies</u> are expressed differently in terms of arousal,<br>behavior control, <b>emotion</b> , and thinking from truth. |

| _ | Attribute Type | Feature                                                |         |
|---|----------------|--------------------------------------------------------|---------|
|   |                | Character count                                        |         |
|   |                | Word count                                             | ſ       |
|   |                | Noun count                                             | ſ       |
| 1 | Quantity       | Verb count                                             | [       |
| 1 | Qualitity      | Number of noun phrases                                 |         |
|   |                | Sentence count                                         |         |
|   |                | Paragraph count                                        |         |
|   |                | Number of modifiers (e.g., adjectives and adverbs)     |         |
|   |                | Average number of clauses per sentence                 |         |
| 2 | Complexity     | Average number of words per sentence                   |         |
| L | Complexity     | Average number of characters per word                  |         |
|   |                | Average number of punctuations per sentence            |         |
|   |                | Percentage of modal verbs "Can"; "May"; "Shall"        |         |
|   |                | Percentage of centainty terms "Always"; "Never"        |         |
| 3 | Uncertainty    | Percentage of generalizing terms "Generally"; "All"; " | 'Many"  |
| J | Checklanity    | Percentage of tentative terms "Possibly"; "Probably"   |         |
|   |                | Percentage of numbers and quantifiers                  |         |
|   |                | Number of question marks                               |         |
|   |                | Percentage of subjective verbs "Feel"; "Indicate"; "Be | elieve" |
| 4 | Subjectivity   | Percentage of report verbs "Suggest"; "Speculate"      |         |
| ſ | Subjectivity   | Percentage of factive verbs "Accept"; "Note"; "Confirm | m"      |
|   |                | Percentage of imperative commands "Give"; "Do"         |         |

Attribute-based language features

|    | Attribute Type    | Feature                                                              | -            |
|----|-------------------|----------------------------------------------------------------------|--------------|
|    |                   | Percentage of passive voice                                          |              |
|    |                   | Percentage of rhetorical questions                                   | -            |
| 5  | Non-              | Self reference: 1 <sup>st</sup> person singular pronouns             | -            |
|    | immediacy         | Group reference: 1 <sup>st</sup> person plural pronouns              |              |
|    |                   | Other reference: 2 <sup>nd</sup> and 3 <sup>rd</sup> person pronouns |              |
|    |                   | Number of quotations                                                 |              |
|    |                   | Percentage of positive words                                         |              |
| 6  | Sentiment         | Percentage of negative words                                         | Í            |
| 0  | Sentiment         | Number of exclamation marks                                          |              |
|    |                   | Activation: the dynamics of emotional state                          |              |
|    |                   | Lexical diversity: unique words or terms (%)                         |              |
| 7  | Diversity         | Content word diversity: unique content words (%)                     | "Car"; "Red" |
|    |                   | Redundancy: unique function words (%)                                | "Are"; "An"  |
| 8  | Informality       | Typographical error ratio: misspelled words (%)                      |              |
|    |                   | Temporal ratio                                                       |              |
|    |                   | Spatial ratio                                                        | -            |
| 9  | Specificity       | Sensory ratio                                                        |              |
|    |                   | Causation terms                                                      |              |
|    |                   | Exclusive terms                                                      |              |
| 10 | Readablity (e.g., | Flesch-Kincaid and Gunning-Fog index)                                |              |

#### 0.4[(#words/#sentences)+(#long\_words/#words)

### Textual (Linguistic) Style of Fake News

Attribute-based language features

The general construct of immediacy and nonimmediacy refers to (non-)verbal behaviors that create a psychological sense of closeness or distance.

| Attribute Type | [Newman et al. 2003] | [Fuller et al. 2009] | [Matsumoto and Hwang 2015] | [Derrick et al. 2013] | [Zhou et al. 2004b] | [Hancock et al. 2007] | [Anderson and Simester 2014] | [Braun and Van Swol 2016] | [Bond and Lee 2005] | [Zhou and Zenebe 2008] | [Ali and Levine 2008] | [Humpherys et al. 2011] |
|----------------|----------------------|----------------------|----------------------------|-----------------------|---------------------|-----------------------|------------------------------|---------------------------|---------------------|------------------------|-----------------------|-------------------------|
| Quantity       |                      | +                    | +                          | -                     | +                   | +                     | +                            | -                         |                     | +                      | +                     | +                       |
| Complexity     |                      |                      |                            |                       | -                   |                       |                              |                           |                     |                        |                       | +                       |
| Uncertainty    |                      |                      | _                          |                       | +                   | +                     |                              | +                         |                     |                        | -                     | -                       |
| Non-immediacy  | +                    | +                    | +                          |                       | +                   | +                     | +                            | +                         | +                   | +                      |                       | +                       |
| Sentiment      | -                    | +                    | —                          |                       |                     | -                     |                              | +                         | -                   |                        | +                     | +                       |
| Diversity      |                      | —                    |                            | -                     | -                   |                       | -                            |                           |                     | -                      | -                     | —                       |
|                |                      |                      |                            |                       | -                   |                       |                              |                           |                     | +                      |                       |                         |
| Informality    |                      |                      |                            |                       | +                   |                       |                              |                           |                     | -                      |                       |                         |

+: The attribute is positively related to the existence of deception;

-: The attribute is negatively related to the existence of deception.

### Textual (Linguistic) Style of Fake News

Performance of attribute-based language features

- Quantity
- Non-immediacy **1**
- Informality
- Diversity
- Specificity **I**





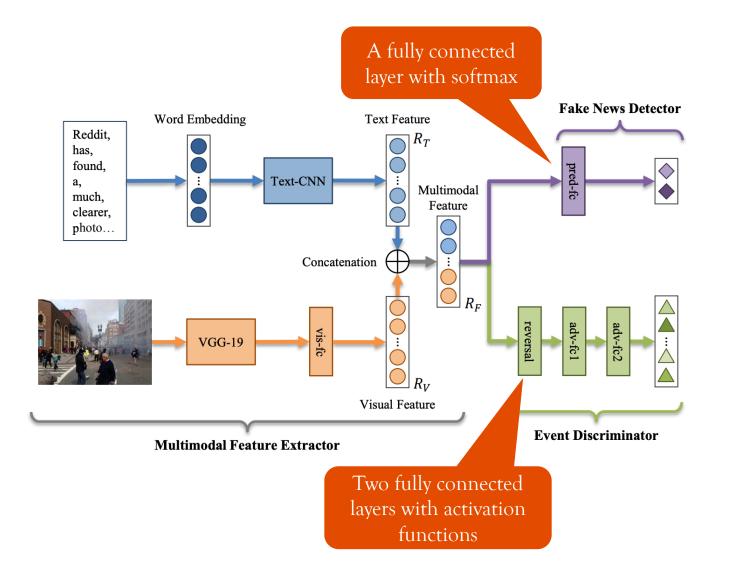
# Style-based Fake News Detection

**Style-based Fake News Detection** is able to assess <u>news intention</u> by comparing the *writing style* extracted from to-be-verified *news content* with fake news style.

Fake News Style is a set of <u>machine learning features</u> that can well represent fake news and differentiate fake news from truth.

- Textual (linguistic) style features
- Visual style features





### Visual Style of Fake News An illustration: EANN

#### EANN:

multi-modal; adversarial network inspired; fake news early detection

<u>Fake News Early Detection:</u> extract a set of **generalizable** and **discriminable** features to represent news content and detect fake news

W. Yaqing, et al., EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection. *KDD'18* 





# Syracuse University

## Knowledge- & Style-based Fake News Detection

Summary

How to involve *social context information* of fake news, e.g., its propagation patterns on social networks?

|                                   | Knowledge-based<br>fake news detectio           | Style-based<br>fake news detection              |
|-----------------------------------|-------------------------------------------------|-------------------------------------------------|
| Information utilized              | News content                                    | News content                                    |
| Modality involved                 | Single: only text                               | Single or multi: text, visual, etc.             |
| Objective(s) evaluated            | News authenticity                               | News authenticity and intention                 |
| Framework for solving the problem | Link prediction                                 | Machine learning                                |
| Related topic                     | Fact-checking                                   | Deception detection                             |
| Open issues                       | Timeliness and completeness of knowledge graphs | Cross-domain, language, topic fake news studies |





## Fake News Detection

- Knowledge-based Fake News Detection
- Style-based Fake News Detection
- Propagation-based Fake News Detection
- Credibility-based Fake News Detection
- Fake News Datasets & Tools





# Propagation-based Fake News Detection

**Propagation-based Fake News Detection** utilizes <u>social context information</u> to explore the relationships among entities in news propagation.

- Entities, e.g., spreaders (users) of news, publishers of news, posts of users
- Relationships among the same or different entities

Basis of propagation-based fake news detection approaches

- News cascades (propagation trees) a *direct* way to present news propagation
- Self-defined graphs (networks) an *indirect* way to present news propagation





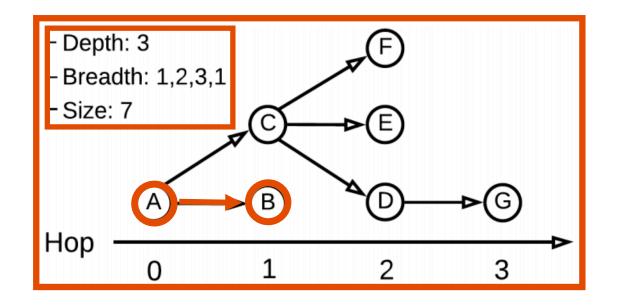
# Propagation-based Fake News Detection

**Propagation-based Fake News Detection** utilizes <u>social context information</u> to explore the relationships among entities in news propagation.

- Entities, e.g., spreaders (users) of news, publishers of news, posts of users
- Relationships among the same or different entities

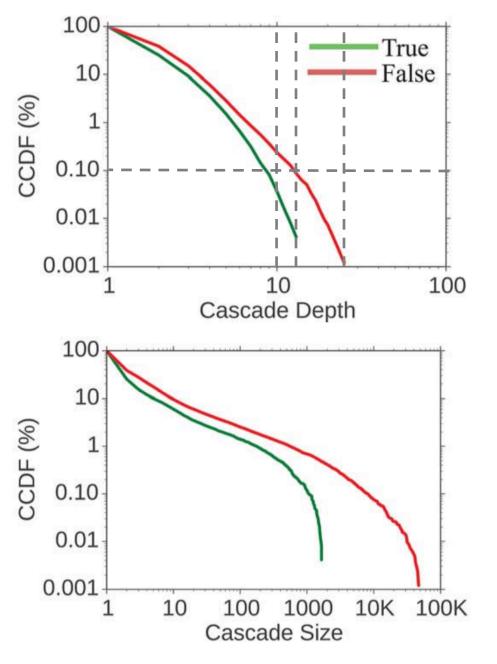
Basis of propagation-based fake news detection approaches

- News cascades (propagation trees) a *direct* way to present news propagation
- Self-defined graphs (networks) an *indirect* way to present news propagation



A news cascade: One propagation path of a news article Root node: The original post of user related to the news article Other node: The re-post of the post of parent node Directed Edge: Post  $\rightarrow$  repost relationships

### News Cascade Definition



Fake news spreads deeper than the truth

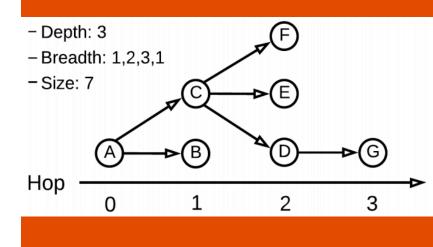
Fake news spreads farther than the truth

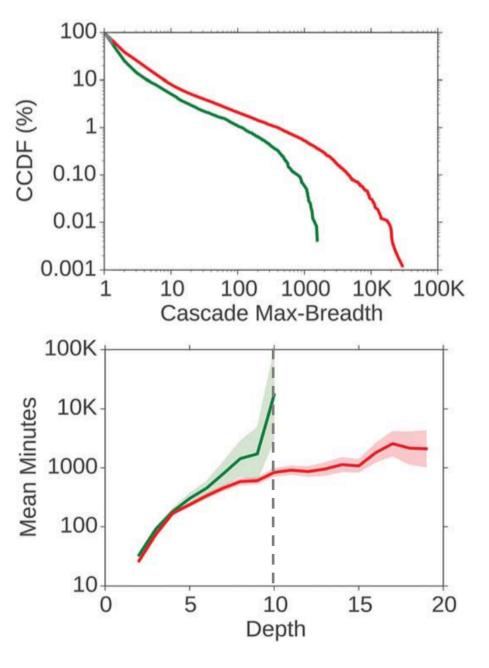
S. Vosoughi, et al. The spread of true and false news online. Science, 2018

### News Cascade

Illustrated studies –

A. Cascade-based pattern discovering



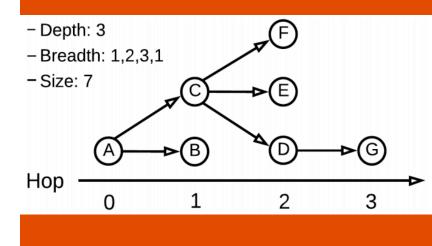


Fake news spreads more broadly than the truth

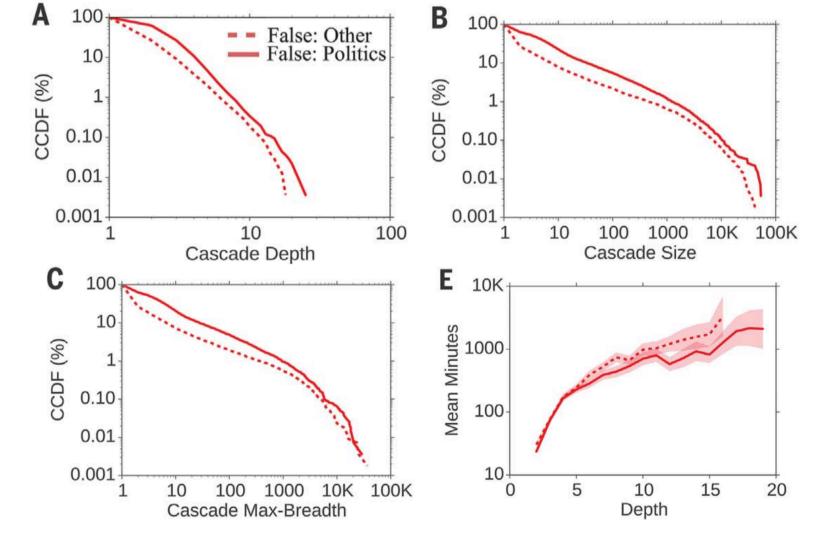
Fake news spreads faster than the truth

S. Vosoughi, et al. The spread of true and false news online. Science, 2018

News Cascade Illustrated studies – A. Cascade-based pattern discovering of fake news



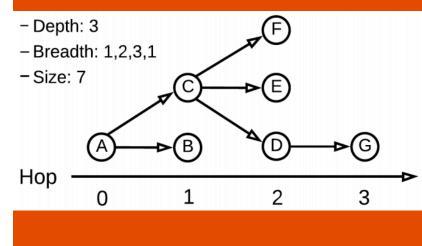
X. Zhou, R. Zafarani, K. Shu, H. Liu

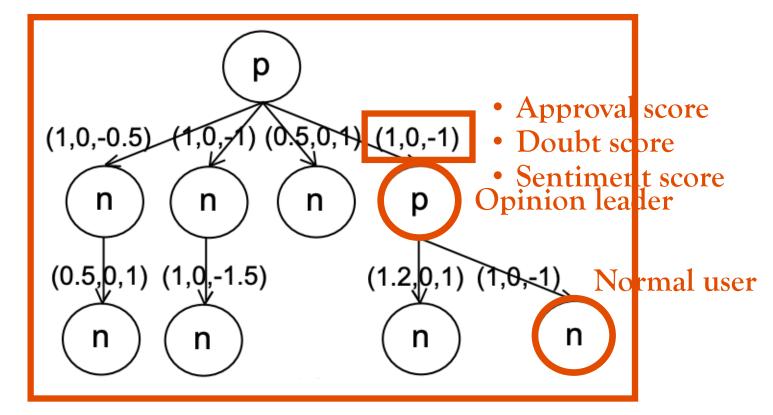


### <u>Political</u> fake news spreads deeper, farther, more broadly and faster than fake news in other domains

S. Vosoughi, et al. The spread of true and false news online. Science, 2018

News Cascade Illustrated studies – A. Cascade-based pattern discovering of fake news



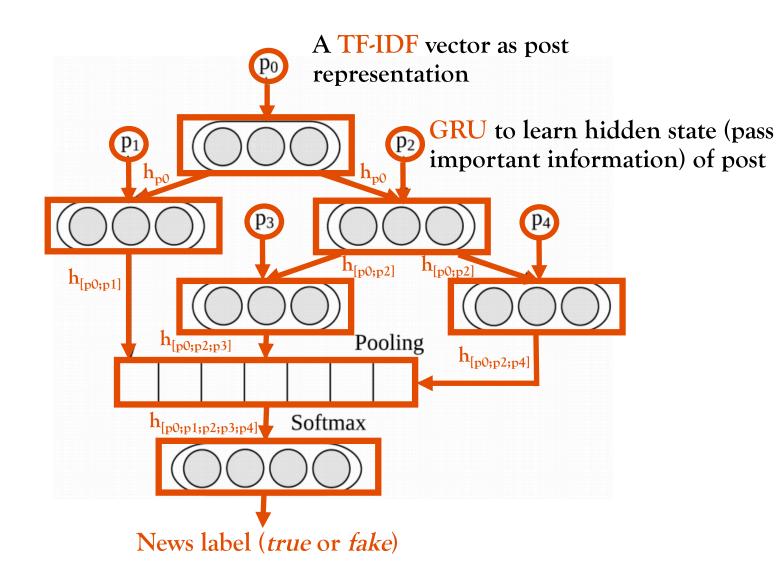


### Random walk graph kernel

K. Wu, et al. False Rumors Detection on Sina Weibo by Propagation Structures, ICDE'15 News Cascade

Illustrated studies – B. Fake news detection based on cascade *similarity* 

<u>Challenges</u>: **Computational expense,** as similarity will be computed between pairwise cascades.



News Cascade Illustrated studies – C. Fake news detection based on cascade *representation* 

<u>Challenges</u>: Cascade depth sensitivity, as

the depth of cascade is equivalent to that of neural network.

J. Ma, et al. Rumor Detection on Twitter with Treestructure Recursive Neural Networks, ACL'18



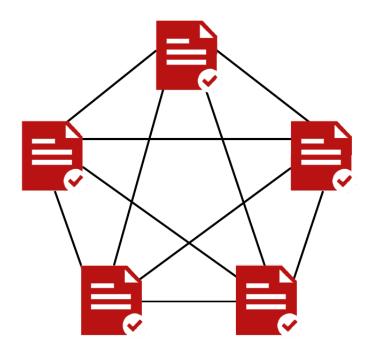


# Propagation-based Fake News Detection

- Homogeneous Networks contain a single type of nodes and edge.
- Heterogeneous Networks contain multiple types of nodes or edges.
- Hierarchical Networks, whose various nodes and edges form set-subset relationships.

Basis of propagation-based fake news detection approaches

- News cascades (propagation trees) a *direct* way to present news propagation
- Self-defined graphs (networks) an *indirect* way to present news propagation



#### Stance Network

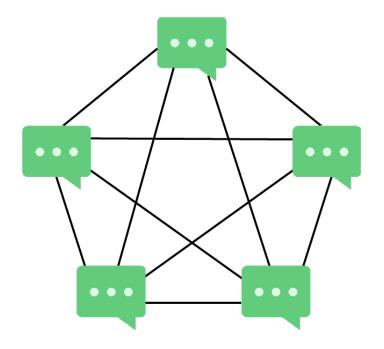


News article

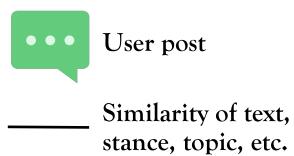
Similarity of text, stance, topic, etc.

### Homogeneous Network

Illustrations of homogeneous networks



Stance Network

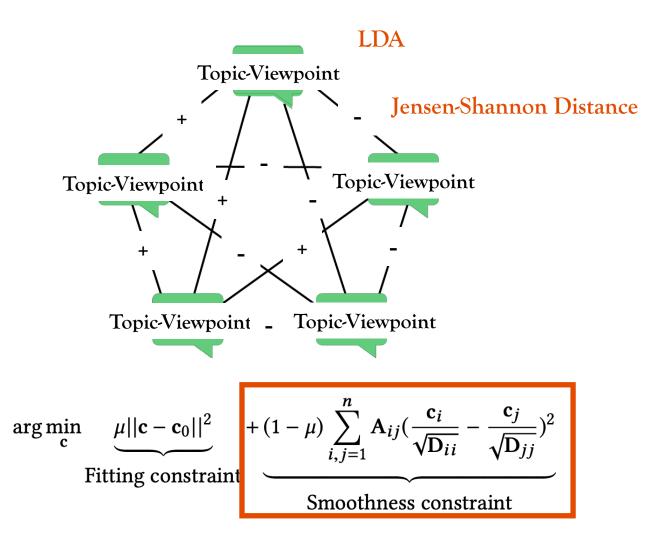


### Homogeneous Network

Illustrations of homogeneous networks

X. Zhou, R. Zafarani, K. Shu, H. Liu

61



Z. Jin, et al. News Verification by Exploiting Conflicting Social Viewpoints in Microblogs, AAAI'16

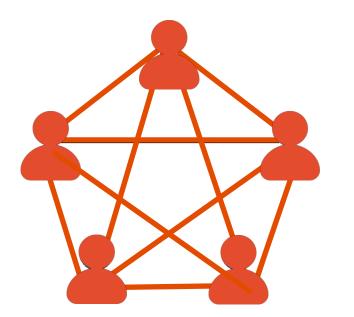
## Homogeneous Network

Illustrations of related studies

conflicting viewpoints mining tweets

<u>Assumption:</u> Posts with the same (contradicting) viewpoints rise (weaken) each other's credibility.

original credibility network credibility network with conflicting relations





\_\_\_\_ Friend relationship

#### Friendship Network

X. Zhou and R. Zafarani, Fake News in Networks: Patterns, Representation and Detection.

# Homogeneous Network

Illustrations of homogeneous networks

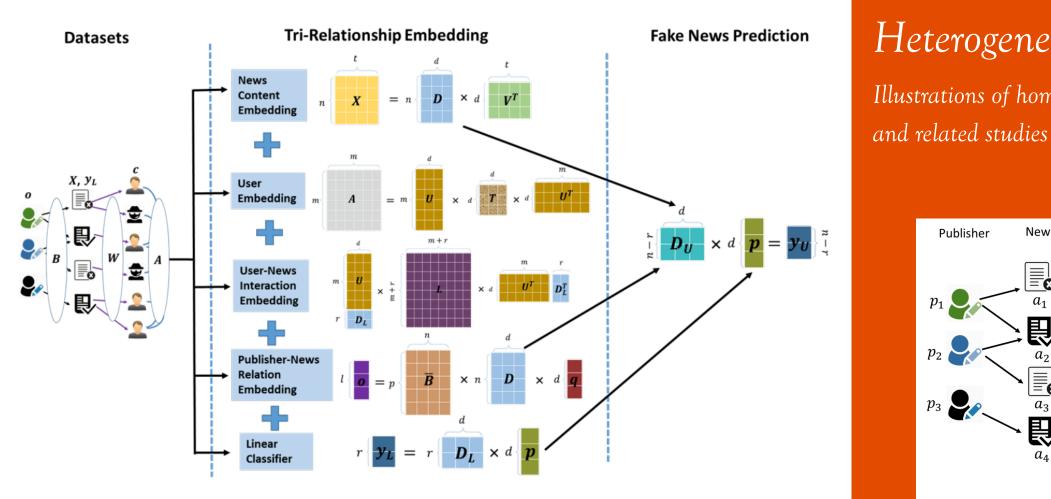


### Heterogeneous Network

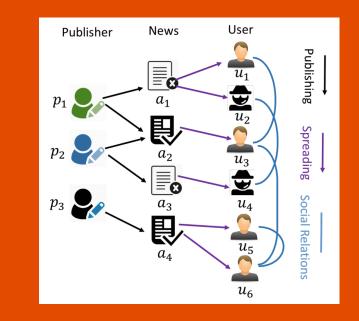
Illustrations of homogeneous networks and related studies

#### Assumption:

- Credible user  $\rightarrow$  Credible tweets
- Average credibility of tweets: Credible events > Incredible events



## Heterogeneous Network Illustrations of homogeneous networks



X. Zhou, R. Zafarani, K. Shu, H. Liu

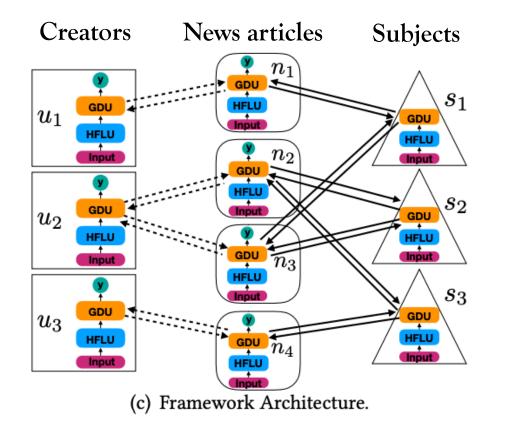
K. Shu, et al. Beyond News Contents: The Role of Social Context for Fake News Detection, WSDM'19.

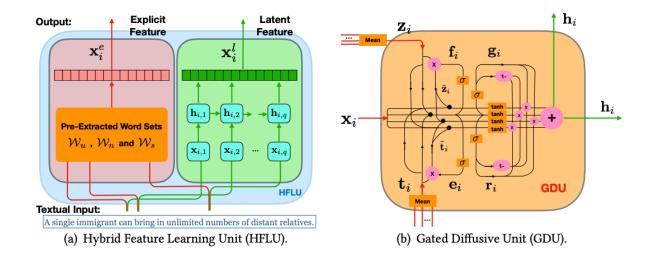


### Heterogeneous Network

Syracuse University

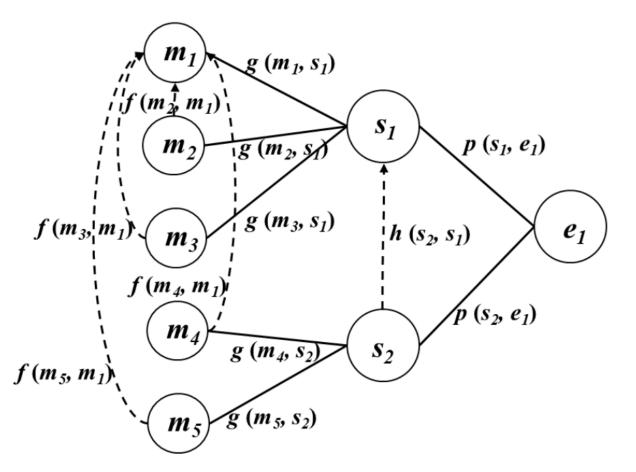
Illustrations of homogeneous networks and related studies





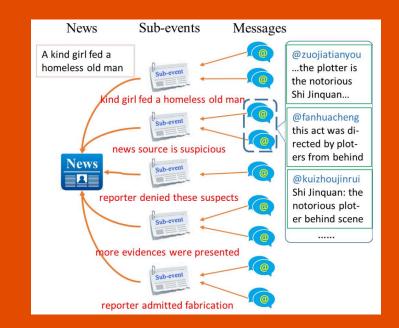
J. Zhang, et al. Fake News Detection with Deep Diffusive Network Model, arXiv: 1805.08751, 2018

### Message Layer Sub-event Layer Event Layer



### Hierarchical Network

Illustrations of hierarchical networks and related studies



Z. Jin, et al. News Credibility Evaluation on Microblog with a Hierarchical Propagation Model, ICDM'14





## Fake News Detection

- Knowledge-based Fake News Detection
- Style-based Fake News Detection
- Propagation-based Fake News Detection
- Credibility-based Fake News Detection
- Fake News Datasets & Tools





### Credibility-based Fake News Detection Overview

Credibility-based Fake News Detection also involve social context information

- <u>Credibility</u> of entities, e.g., news headlines, comments and spreaders
- Relationships among the <u>credibility</u> of the same or <u>ifferent entities</u>

detection

Overlaps with propagation-based fake news detection

Clickbait Review spam(mer) detection

Bot detection;

## This is your brain on clickbait











intrigued excited disappointed angry depressed

### approximately 3 seconds

אווידיוויד סטוטומריוד-טווס

FORTUNE.COM

News Headline Credibility <sup>Clickbait</sup>

Clickbait is <u>headlines</u> whose main purpose is to <u>attract the attention of</u> <u>visitors and encourage them to click</u> <u>on a link to a particular web page</u>.



### News Headline Credibility Clickbait & Fake News

When news articles meet clickbait:

Syracuse University

- Attract eyeballs but are rarely newsworthy
- Increase click rate and further gain the public trust

| Term                | Phenomenon                             |
|---------------------|----------------------------------------|
| Attentional bias    | Exposure frequency - individuals       |
| Validity effect     | tend to believe information is correct |
| Echo chamber effect | after repeated exposures.              |







# News Headline Credibility

By detecting clickbait

Syracuse University

Feature engineering within a supervised machine learning framework<sup>8</sup>

- N-gram and POS tags  $\rightarrow$  Structure-based style features
- Informality, readability and immediacy  $\rightarrow$  Attribute-based style features
- Similarity between news headline and body-text

Deep clickbait detection

News with clickbait < News without clickbait

<sup>8</sup>P. Biyani, et al., "8 Amazing Secrets for Getting More Clicks": Detecting Clickbaits in News Streams Using Article Informality . AAAI'16





# News Comment Credibility

Review Spam Detection

- Content-based / Style-based models
- Behavior-based models
- Graph-based models





## News Comment Credibility

Review Spam Detection

• Content-based / Style-based

Syracuse University

- Behavior-based models
- Graph-based models

| Category   | Features                                                                 |
|------------|--------------------------------------------------------------------------|
| Burstiness | Measuring the sudden promotion or descent of average rating, number      |
|            | of reviews, etc. for a product. This category of features emphasize on   |
|            | the <i>collective</i> behavior among reviewers                           |
| Activity   | Measuring the total or maximum number of reviews a reviewer writes       |
|            | for a single product or products in a fixed time interval. This category |
|            | of features emphasize on the <i>individual</i> behavior of reviewers     |
| Timeliness | Measuring how early a product has received the review(s), or one         |
|            | reviewer has posted the reviews for products                             |
| Similarity | Measuring the (near) duplicate reviews written by a single reviewer or   |
|            | for a product, or measuring the rating deviation of one reviewer from    |
|            | the others for a product                                                 |
| Extremity  | Measuring the ratio or number of extreme positive or negative reviews    |
|            | of a product, or for a reviewer among products                           |





# News Comment Credibility

Review Spam Detection

Products Reviewers Reviews • Content-based / Style-ba Reviewers Products • Behavior-based models Trustworthy Reliable • Graph-based models Label Trustworthy Trustworthy ▲ Co-bursting matrices  $\Delta$  Co-bursting mode Non-trustworthy Unreliable □ Activity mode Dishonest review Honest review ■ Inter-review arrival time be-tween two adjacent reviews -+→ Positive review -- → Negative review ·-· Negative review - Positive review  $\leftrightarrow$  Supportive reviews <-> Unsupportive reviews

**Probabilistic Graphical Models** 

Web ranking algorithm





# News Spreader Credibility

User Classification

#### User credibility score: low $\rightarrow$ high

#### Malicious users

• Intentionally engage in fake news activities

#### Susceptible users

• Unintentionally engage in fake news activities

#### Insusceptible users

• Immune to fake news

|                | Term                          | Phenomenon                                                            |  |  |
|----------------|-------------------------------|-----------------------------------------------------------------------|--|--|
|                | Attentional bias              | <b>Exposure frequency -</b> individuals                               |  |  |
| nce            | Validity effect               | tend to believe information is                                        |  |  |
| influence      | Echo chamber effect           | correct after repeated exposures.                                     |  |  |
|                | Bandwagon effect              | Peer pressure - individuals do                                        |  |  |
| Social         | Normative influence theory    | something primarily because others                                    |  |  |
| Soc            | Social identity theory        | are doing it and to conform to be<br>liked and accepted by others.    |  |  |
|                | Availability cascade          | liked and accepted by others.                                         |  |  |
| ce             | Confirmation bias             | Preexisting knowledge -                                               |  |  |
| Self-influence | Illusion of asymmetric        | individuals tend to trust information                                 |  |  |
| nfli           | insight                       | that confirms their preexisting                                       |  |  |
| lf-i           | Naïve realism                 | beliefs or hypotheses, which they perceive to surpass that of others. |  |  |
| Se             | <b>O</b> verconfidence effect | perceive to surpass that or others.                                   |  |  |

## News Spreader Credibility

Why normal users can unintentionally engage in spreading fake news?

Social Influence  $\rightarrow$  How widely the news article has been spread?

Self-influence  $\rightarrow$  What preexisting knowledge a user has?





## Beyond News Contents: The Role of Social Context for Fake News Detection

#### Kai Shu, Suhang Wang and Huan Liu

WSDM 2019

#### Fake News Detection on Social Media - Challenges

• News Content

Syracuse University

- Fake news pieces are intentionally written to mislead users
- Diverse in terms of topics, styles, and media platforms

## Social Context

- Social engagements are massive, incomplete, unstructured, and noisy
- Effective methods are sought to differentiate credible users, extract useful post features, and exploit network interactions





Social

Context

Explore Auxiliary information



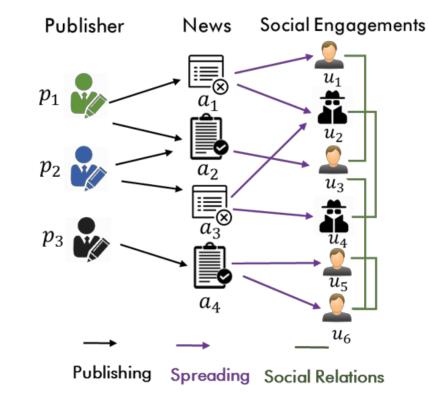


#### Fake News Detection – Multi-Source

- A typical news dissemination system on social media
  - Entities: publisher p, news a, and social media users u
  - Relations: **publishing**, **spreading**, **social** relations

Publishing Publisher
with partisan bias are
more likely to post fake
news
e.g.,  $p_1 \rightarrow a_1 \quad p_2 \rightarrow a_3$   $p_3 \rightarrow a_4$ 

Syracuse University



#### ➤ spreading

Low credibility users on social media are likely to share fake news, e.g.,  $a_1 \rightarrow u_2 \ a_3 \rightarrow u_2$ 

#### ➤ social

Users form relationship with like-minded people

 $\texttt{e.g.,} \ u_2 \leftrightarrow u_4 \ u_3 \leftrightarrow u_1$ 



## Tri-Relationship Embedding (TriFN)

• News content embedding

Syracuse University

- Content modeling
- Publisher news relation embedding
- Social Context embedding
  - Basic user feature representation
  - User news engagement modeling
- We jointly combine news content embedding and social context embedding for fake news detection

 $\min_{\mathbf{D},\mathbf{V}\geq 0} \|\mathbf{X} - \mathbf{D}\mathbf{V}^T\|_F^2 + \lambda(\|\mathbf{D}\|_F^2 + \|\mathbf{V}\|_F^2)$ 

$$\longrightarrow \min \| \bar{\mathbf{B}} \mathbf{D} \mathbf{Q} - \mathbf{o} \|_2^2 + \lambda \| \mathbf{Q} \|_2^2$$

 $\min_{\mathbf{U},\mathbf{T}\geq 0} \|\mathbf{Y}\odot(\mathbf{A}-\mathbf{U}\mathbf{T}\mathbf{U}^T)\|_F^2 + \lambda(\|\mathbf{U}\|_F^2 + \|\mathbf{T}\|_F^2)$ 

$$\min \underbrace{\sum_{i=1}^{m} \sum_{j=1}^{r} W_{ij} c_i (1 - \frac{1 + y_{Lj}}{2}) ||U_i - D_{L_j}||_2^2}_{\text{True news}} \\ + \underbrace{\sum_{i=1}^{m} \sum_{j=1}^{r} W_{ij} (1 - c_i) (\frac{1 + y_{Lj}}{2}) ||U_i - D_{L_j}||_2^2}_{\text{Fake news}}$$

#### Arizona State University

#### Table 1: The statistics of FakeNewsNet dataset

| Platform         | BuzzFeed | PolitiFact |
|------------------|----------|------------|
| # Users          | 15,257   | 23,865     |
| # Engagements    | 25,240   | 37,259     |
| # Social Links   | 634,750  | 574,744    |
| # Candidate news | 182      | 240        |
| # True news      | 91       | 120        |
| # Fake news      | 91       | 120        |
| # Publisher      | 9        | 91         |

News Content

Social Context

#### RST: rhetorical relations among the words in the text Ο

• Compared baselines:

websites

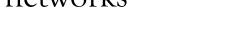
LIWC: lexicons falling into psycholinguistic categories Ο

Datasets: FakeNewsNet with information for news conten

social context and ground truth labels from fact-checking

- Castillo: features from user profiles, social networks Ο
- RST+Castillo Ο
- LIWC+Castillo Ο

News Content + Social Context



**Evaluation Setting** 





#### **Evaluation Results - Detection Performance**

- Social context based features are more effective than news content based features
- TriFN performs the best than other methods using both news content and social context information

| Datasets   | Metric    | RST               | LIWC              | Castillo          | RST+Castillo      | LIWC+Castillo     | TriFN                               |
|------------|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------------------|
|            | Accuracy  | $0.610 \pm 0.023$ | $0.655 \pm 0.075$ | $0.747 \pm 0.061$ | $0.758 \pm 0.030$ | $0.791 \pm 0.036$ | $\textbf{0.864} \pm \textbf{0.026}$ |
| BuzzFeed   | Precision | $0.602 \pm 0.066$ | $0.683 \pm 0.065$ | $0.735 \pm 0.080$ | $0.795 \pm 0.060$ | $0.825 \pm 0.061$ | $\textbf{0.849} \pm \textbf{0.040}$ |
| Duzzreeu   | Recall    | $0.561 \pm 0.057$ | $0.628 \pm 0.021$ | $0.783 \pm 0.048$ | $0.784 \pm 0.074$ | $0.834 \pm 0.094$ | $\textbf{0.893} \pm \textbf{0.013}$ |
|            | F1        | $0.555 \pm 0.057$ | $0.623 \pm 0.066$ | $0.756 \pm 0.051$ | $0.789 \pm 0.056$ | $0.802 \pm 0.023$ | $\textbf{0.870} \pm \textbf{0.019}$ |
|            | Accuracy  | $0.571 \pm 0.039$ | $0.637 \pm 0.021$ | $0.779 \pm 0.025$ | $0.812\pm0.026$   | $0.821\pm0.052$   | $\textbf{0.878} \pm \textbf{0.020}$ |
| PolitiFact | Precision | $0.595 \pm 0.032$ | $0.621 \pm 0.025$ | $0.777 \pm 0.051$ | $0.823 \pm 0.040$ | $0.856 \pm 0.071$ | $0.867 \pm 0.034$                   |
| Tonuraci   | Recall    | $0.533 \pm 0.031$ | $0.667 \pm 0.091$ | $0.791 \pm 0.026$ | $0.792 \pm 0.026$ | $0.767 \pm 0.120$ | $0.893 \pm 0.023$                   |
|            | F1        | $0.544 \pm 0.042$ | $0.615 \pm 0.044$ | $0.783 \pm 0.015$ | $0.793 \pm 0.032$ | $0.813 \pm 0.070$ | $\textbf{0.880} \pm \textbf{0.017}$ |

#### Table 2: Performance comparison for fake news detection

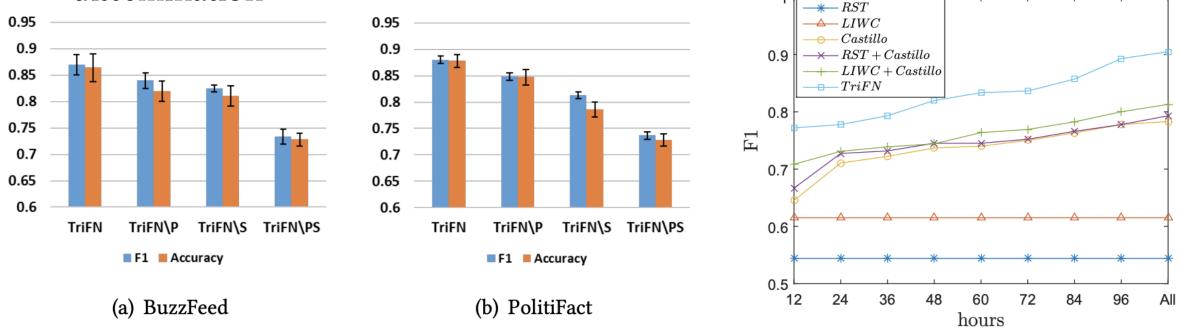
News Content

Social Context



### Evaluation Results - Component Analysis and Early Detection

- Both publisher-news and news-user relations can contribute to the performance improvement of TriFN
- TriFN consistently achieves best performances in the early stage of news dissemination



Syracuse University





#### Summary

- Social context information brings additional signals to fake news detection
- It is important to capture the relations among publishers, news pieces, and users to detect fake news
- The proposed TriFN framework is effective to model tri-relationships through heterogeneous network embedding





## Unsupervised Fake News Detection: A Generative Approach

# Shuo Yang, Kai Shu, Suhang Wang, Renjie Gu, Fan Wu, and Huan Liu

#### AAAI 2019





#### Unsupervised Fake News Detection

- Existing methods are mainly supervised, which require extensive amount of time and labor to build a reliably annotated dataset.
- We aim to build an unsupervised fake news detection method by modeling user opinions and user credibility



Janie Johnson 🔮 @jjauthor - 4 Nov 2016 Not shocking! Vote Babies!

Pope Francis Shocks World, Endorses Donald Trump for President, Releases Statement endingthefed.com/pope-francis-s...

Q 12 tl 58 ♡ 46 🗹

Agreeing the authenticity of the news



iYamWhatIYam @MRIrene · 21 Oct 2016 FALSE: Pope Francis Shocks World, Endorses Donald Trump for President Trumpbots getting desperate and creative. go.shr.lc/2cNK449

♀ 1↓ 4 ♥ 3 ♥

#### Doubting the authenticity of the news





#### Unsupervised Fake News Detection - challenges

- User social engagements are usually unstructured, large-scale, and noisy
- User opinions may be conflicting and unreliable, as the users usually have different degrees of credibility in identifying fake news
- The relationships among news, tweets, and users on social media form more complicated topologies
- Existing truth discovery methods mainly focus on "source-item" paths, and cannot be directly applied



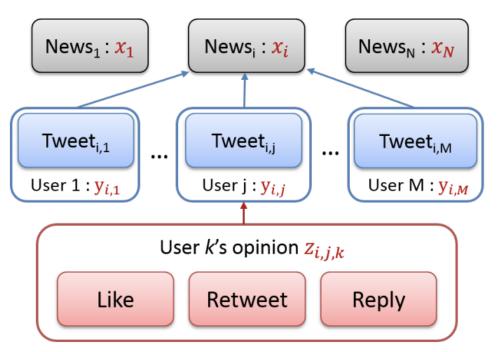


#### The hierarchical user engagement structure

- We build a hierarchical user engagement structure for each news  $\circ x_i$  is a random variable denoting the label of  $news_i$ 
  - $\circ y_{i,j}$  denotes the opinion with sentiment of verified user to j  $news_i$
  - $_{\circ} z_{i,j,k}$  is the opinion of unverified user k to  $news_i$ 
    - Like: opinion same with  $y_{i,j}$
    - Reply: sentiment score of the reply
    - Retweet: opinion same with  $y_{i,j}$



Unverified User

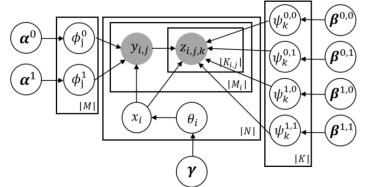




#### The Proposed Probabilistic Model (UFD)

- For each news  $i, x_i$  is generated from Bernoulli distribution  $x_i \sim \text{Bernoulli}(\theta_i)$
- For verified user j  $y_{i,j} \sim \text{Bernoulli}(\phi_j^{x_i})$ 
  - $\circ \phi_j^1 (\phi_j^0)$  the probability that the user j thinks a news piece is real given the truth estimation of the news is true and fake
- For unverified k,  $z_{i,j,k} \sim \text{Bernoulli}(\psi_k^{x_i,y_{i,j}})$ 
  - the opinion is likely to be influenced by the news itself and the verified users' opinions

$$\begin{split} \psi_k^{0,0} &:= p(z_{i,j,k} = 1 | x_i = 0, y_{i,j} = 0) \\ \psi_k^{0,1} &:= p(z_{i,j,k} = 1 | x_i = 0, y_{i,j} = 1) \\ \psi_k^{1,0} &:= p(z_{i,j,k} = 1 | x_i = 1, y_{i,j} = 0) \\ \psi_k^{1,1} &:= p(z_{i,j,k} = 1 | x_i = 1, y_{i,j} = 1) \end{split}$$







#### **Evaluation Results - Detection Performance**

Syracuse University

- Majority voting achieves the worst performance since it equally aggregates the users' opinions without considering user's credibility degree
- The proposed framework UFD can achieve best performance comparing with other unsupervised truth discovery methods
- We can also discover the top-k creidible users, and these users are mostly expert journalists, professional news reporters

| Table 2: Performance comparison on LIAR dataset |          |           |        |          |           |        |         |  |
|-------------------------------------------------|----------|-----------|--------|----------|-----------|--------|---------|--|
| Methods                                         | Accuracy |           | True   |          | Fake      |        |         |  |
| Inculous                                        | Accuracy | Precision | Recall | F1-score | Precision | Recall | F1-scoi |  |
| Majority Voting                                 | 0.586    | 0.624     | 0.628  | 0.626    | 0.539     | 0.534  | 0.537   |  |
| TruthFinder                                     | 0.634    | 0.650     | 0.679  | 0.664    | 0.615     | 0.583  | 0.599   |  |
| LTM                                             | 0.641    | 0.654     | 0.691  | 0.672    | 0.624     | 0.583  | 0.603   |  |
| CRH                                             | 0.639    | 0.653     | 0.687  | 0.669    | 0.621     | 0.583  | 0.601   |  |
| UFD                                             | 0.759    | 0.766     | 0.783  | 0.774    | 0.750     | 0.732  | 0.741   |  |

|--|

| ruore ii rop u |          |             |             |  |  |  |  |  |
|----------------|----------|-------------|-------------|--|--|--|--|--|
| User           | Accuracy | Sensitivity | Specificity |  |  |  |  |  |
| amy_hollyfield | 1.0      | 1.0         | 1.0         |  |  |  |  |  |
| politico       | 0.909    | 0.833       | 1.0         |  |  |  |  |  |
| loujacobson    | 0.84     | 0.842       | 0.833       |  |  |  |  |  |
| dcexaminer     | 0.833    | 0.818       | 0.857       |  |  |  |  |  |
| FoxNews        | 0.818    | 0.714       | 1.0         |  |  |  |  |  |
|                |          |             |             |  |  |  |  |  |



# NE STATE

## Summary

- We study the novel problem of unsupervised fake news detection, a much desired scenario in the real world
- We propose a probabilistic model to consider the user opinions and user credibility in a hierarchical engagement structure
- We demonstrate the effectiveness of the proposed framework in real-world datasets
- Future work
  - Incorporating user profiles and news contents into unsupervised models
  - Building semi-supervised models with limited engagements information





## Deep Headline Generation for Clickbait Detection

#### Kai Shu, Suhang Wang, Thai Le, Dongwon Lee, and Huan Liu

#### **ICDM 2018**





#### Clickbaits

• Clickbaits are catchy social media posts or sensational headlines that attempt to lure the readers to click

You Won't Beleive What This Guys Does After His Set..... This is the first thug life video that we have seen from the gym. Dude that got his plate stolen prolly gonna use clips for the rest of his life. Could you Read more 9.8K 1.1K Comments 1.2K Shares



- Clickbaits can have negative societal impacts
  - clickbaits may contain sensational and inaccurate information to mislead readers and spread fake news
  - clickbaits may be used to perform clickjacking attacks by redirecting users to phishing websites





#### **Clickbait** Detection

- Existing approaches mainly focus on extracting hand-crafted linguistic features (as traditionally done so) or building sophisticated predictive models such as deep neural networks
- However, these methods may face following limitations
  - Scale: datasets with labels are often limited
  - Distribution: imbalanced distribution of clickbaits and non-clickbaits

We aim to generate synthetic headlines with specific styles and exploit the utility to improve clickbait detection





#### Headline Generation from Documents

• Goal: Generate stylized headlines that also preserve document contents

- Stylized headlines can help augment training data for clickbait detection
- Content preserved headlines make it possible to suggest a non-clickbait headline to readers after we detect a clickbait





#### Problem Definition

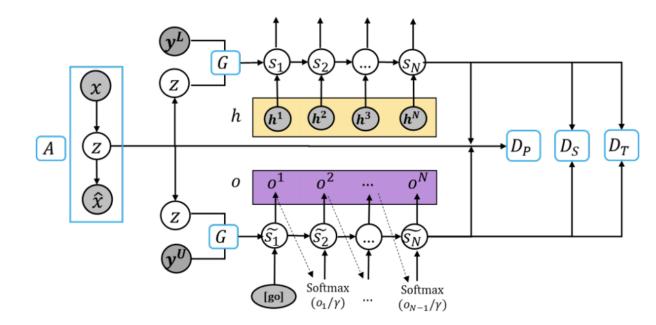
- Let {x<sub>1</sub>, x<sub>2</sub>,..., x<sub>m</sub>} {h<sub>1</sub>, h<sub>2</sub>,..., h<sub>m</sub>} and {y<sub>1</sub>, y<sub>2</sub>,..., y<sub>m</sub>} denote the set of documements, and corresponding headlines and labels
  Giving S = {(x<sub>i</sub>, h<sub>i</sub>)|i = 1,..., m}, learn a generator that can generate stylized headlines given a document and a style label, i.e., o<sub>i</sub> = f(x<sub>i</sub>, y<sub>i</sub>)
- Challenges
  - How to generate realistic and readable headlines from original documents?
  - How to utilize generated headlines to augment training data for clickbait detection
  - How to generate new headlines that can preserve the content of documents and transfer the style of original headlines



## Stylized Headline Generation (SHG)

Syracuse University

- We propose a deep learning model to generate both click-baits and non-clickbaits with style transfer
  - $\circ\,$  Generator Learning: a document autoencoderA , a headline generator  $\,G\,$
  - $\circ~$  Discriminator Learning: a transfer discriminator  $D_T$  , a style discriminator  $D_S$  , a pair discriminator  $D_P$





## **Generator Learning**

Syracuse University

• Document autoencoder *A*extract document representation by minimizing the reconstruction error

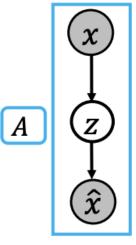
$$\mathcal{L}_{rec}(\theta_e, \theta_d) = -\sum_{i=1}^m \log p(\hat{x}_i | x_i; \theta_d, \theta_e)$$

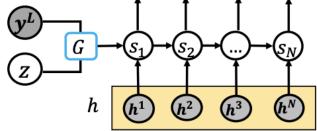
- Headline generator G
  - Generate stylized headline by minimizing the reconstruction error of original headline

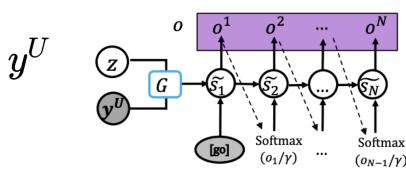
$$\mathcal{L}_G(\theta_G) = \mathbb{E}_{(x,h)\in\mathcal{S}}[-\log p_G(h|\mathbf{y}^L, \mathbf{z}))]$$

Generate a set of new headlines
 opposite to the original headlines

X. Zhou, R. Zafarani, K. Shu, H. Liu





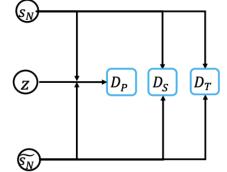




#### Discriminator Learning

- Discriminators regularize the representation learning of document  ${\cal Z}$ , original headline  $S_N$ , and generated headline  $ilde{S_N}$
- Transfer discriminator  $D_T$ : discriminate original data samples with generated data samples Original clickbaits and generated non-clickbaits G

$$\mathcal{L}_{D_{T}} = \mathcal{L}_{D_{T}^{(1)}}(\theta_{D_{T}^{(1)}}) - \mathcal{L}_{D_{T}^{(2)}}(\theta_{D_{T}^{(2)}})$$



Original non-clickbaits and generated clickbaits

• Style discriminator  $D_S$  assign a correct label of styles for both original headlines and generated headlines

Original clickbaits and original non-clickbaits

$$\mathcal{L}_{D_S}(\mathbf{W}, \mathbf{b}) = \mathcal{L}_{D_S}^{(1)} + \mathcal{L}_{D_S}^{(2)}$$

Generated clickbaits and generated non clickbaits





#### Discriminator Learning

• Pair discriminator  $D_P$  ensures that the correspondences of documents and headlines are maintained

Proximity function 
$$p(h_i, x_j) = \frac{1}{1 + \exp(-\mathbf{s}^{(i)}\mathbf{Q}\mathbf{z}^{(j)})}$$
 Document representation

Headline representation

• Maximizing the proximity of (document, headline) pairs with negative sampling

$$\mathcal{L}_{D_P} = -\log \sigma(\mathbf{s}^{(i)} \mathbf{Q} \mathbf{z}^{(i)}) - \sum_{k=1}^{K} \mathbb{E}_{x_k \sim P_n(x)}[\log \sigma(-\mathbf{s}^{(i)} \mathbf{Q} \mathbf{z}^{(k)})]$$



- Datasets
  - Professional writers (P):

TABLE I: The statistics and descriptions of the datasets

| Dataset | Source               | # Clickbaits | # Non-clickbaits |
|---------|----------------------|--------------|------------------|
| P       | Professional Writers | 5,000        | 16,933           |
| M       | Social Media Users   | 4,883        | 16,150           |

Reporters or editors generate clickbaits for their news pieces

• Social media users (M):

Clickbaits to lure people to click their posts on social media.

- Baselines
  - SeqGAN [AAAI'17] : Text generation using GAN with reinforcement learning
  - SVAE [CONLL'16]: Sentence generation using Variational AutoEncoder (VAE)

• CrossA [NIPS'17]: Generating sentences across different styles





#### Experiments - Evaluation questions

- **Consistency**: are generated clickbaits/non-clickbaits consistent with the original datasets?
- Readability: are generated headlines readable or not?
- Similarity: are generated headlines semantically similar to original documents?
- **Differentiability**: are generated clickbaits/non-clickbaits differentiable?
- Accuracy: can generated clickbaits/non-clickbaits help improve the detection performance?

- Data Quality

Data Utility



## Experimental Results - Data Quality

Syracuse University

- Similarity: evaluate the semantic similarity of headlines and documents
  - Bilingual Evaluation Understudy (BLEU) score
  - Uni\_sim: similarity of universal text embedding
- SHG achieves better performances to preserve document content than CrossA

TABLE V: **EQ3**: The Average BLEU (BLEU-4) Score Comparison of Generated Headlines.  $\mathcal{H}$  indicates original headlines, and  $\mathcal{O}$  represents the generated headlines.

| Data | Headlines     | Methods | Clickbait | Non-Clickbait |
|------|---------------|---------|-----------|---------------|
|      | $\mathcal{H}$ |         | 0.555     | 0.527         |
| Ρ    | Ø             | CrossA  | 0.407     | 0.432         |
|      |               | SHG     | 0.453     | 0.446         |
|      | H             |         | 0.541     | 0.534         |
| Μ    | Ø             | CrossA  | 0.432     | 0.437         |
|      | 0             | SHG     | 0.451     | 0.442         |

TABLE VI: EQ3: The Average Uni\_sim Value Comparison of Generated Headlines.  $\mathcal{H}$  indicates original headlines, and  $\mathcal{O}$  represents the generated headlines.

| Data | Headlines         | Methods       | Clickbait           | Non-Clickbait |
|------|-------------------|---------------|---------------------|---------------|
|      | $ $ $\mathcal{H}$ |               | 0.63                | 0.81          |
| P    | 0                 | CrossA<br>SHG | 0.20<br><b>0.37</b> | 0.22<br>0.40  |
|      | $ $ $\mathcal{H}$ |               | 0.64                | 0.81          |
| M    | 0                 | CrossA<br>SHG | 0.26<br><b>0.34</b> | 0.34<br>0.38  |





#### Experimental Results - Data Utility

- Accuracy: improvement comparison of original headlines on AUC
  - The headlines generated by SVAE, CrossA, and SHG can increase the performance of clickbait detection to some extent
  - SHG consistently outperforms SVAE and CrossA

| Data | Classifier | Org   | SeqGAN                      | SVAE                      | CrossA                    | SHG                             |
|------|------------|-------|-----------------------------|---------------------------|---------------------------|---------------------------------|
|      | LogReg     | 0.928 | $0.900~(\downarrow 3.02\%)$ | $0.933~(\uparrow 0.54\%)$ | $0.932~(\uparrow 0.64\%)$ | <b>0.936</b> ( <b>† 0.86</b> %) |
|      | DTree      | 0.894 | $0.882~(\downarrow 1.34\%)$ | $0.908~(\uparrow 1.57\%)$ | $0.900~(\uparrow 0.67\%)$ | 0.910 († 1.79%)                 |
| P    | RForest    | 0.900 | $0.893~(\downarrow 0.78\%)$ | $0.912~(\uparrow 1.33\%)$ | $0.916~(\uparrow 1.78\%)$ | $0.925~(\uparrow 2.78\%)$       |
| 1    | XGBoost    | 0.919 | $0.914~(\downarrow 0.54\%)$ | $0.923~(\uparrow 0.43\%)$ | $0.926~(\uparrow 0.76\%)$ | <b>0.928</b> († <b>0.98</b> %)  |
|      | AdaBoost   | 0.917 | $0.896~(\downarrow 2.29\%)$ | $0.921 (\uparrow 0.44\%)$ | $0.921 (\uparrow 0.44\%)$ | $0.931~(\uparrow 1.64\%)$       |
|      | SVM        | 0.904 | $0.898~(\downarrow 0.66\%)$ | $0.917 (\uparrow 1.44\%)$ | $0.920~(\uparrow 1.77\%)$ | <b>0.923</b> († <b>2</b> .10%)  |
|      | GradBoost  | 0.921 | $0.914~(\downarrow 0.76\%)$ | $0.924~(\uparrow 0.33\%)$ | $0.926~(\uparrow 0.54\%)$ | <b>0.928</b> († <b>0.76</b> %)  |



# Syracuse University

## Summary

- We study the problem of generating clickbaits/nonclickbaits from original documents for clickbait detection
- We propose a novel deep generative model with adversarial learning
- Future work
  - Explore the generalization capacity of SHG on other styles such as positive-negative sentiment style and academic-news reporting style
  - Investigate the strategy of learning the disentangled representations of content and style





## Summary and Comparison for Fake News Detection

|                         | Knowledge-based fake<br>news detection | Style-based fake<br>news detection | Propagation-based<br>fake news detection     | Credibility-based fake<br>news detection |  |
|-------------------------|----------------------------------------|------------------------------------|----------------------------------------------|------------------------------------------|--|
| Information<br>Utilized | News cor                               | ntent                              | News content &<br>Social context information |                                          |  |
| Techniques              | Graph models                           | Feature-based<br>methods           | Graph models &<br>Feature-based methods      |                                          |  |
| Resources               | Knowledge graphs                       | Fundamental theories               |                                              |                                          |  |
| Related<br>Topic(s)     | Fact-checking                          | Deception<br>detection             | Rumor detection                              | Clickbait/bot/review<br>spam detection   |  |





# Fake News Detection

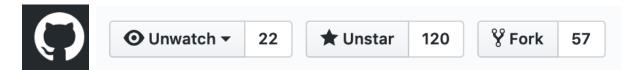
- Knowledge-based Fake News Detection
- Style-based Fake News Detection
- Propagation-based Fake News Detection
- Credibility-based Fake News Detection
- Fake News Datasets & Tools



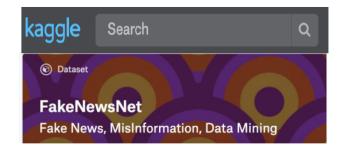


# FakeNewsNet: A Data Repository with News Content, Social Context and Dynamic Information for Studying Fake News on Social Media

# Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dongwon Lee, Huan Liu



https://github.com/KaiDMML/FakeNewsNet X. Zhou, R. Zafarani, K. Shu, H. Liu



https://www.kaggle.com/mdepak/fakenewsnet



# How unique is FakeNewsNet?

Syracuse University

• A comprehensive data repository that contains news contents, social context, and spatiotemporal information

| Features     | News Content          |                       | Social Context |                                       |                       |                       | Spatiotemporal Information |          |
|--------------|-----------------------|-----------------------|----------------|---------------------------------------|-----------------------|-----------------------|----------------------------|----------|
| Dataset      | Linguistic            | Visual                | User           | Post                                  | Response              | Network               | Spatial                    | Temporal |
| BuzzFeedNews | ✓ ✓                   |                       | /              | ′                                     |                       |                       |                            |          |
| LIAR         | ✓ ✓                   |                       | /              | · · · · · · · · · · · · · · · · · · · |                       |                       |                            |          |
| BS Detector  | ✓ ✓                   |                       | 1              | /                                     |                       |                       | ,                          |          |
| CREDBANK     | ✓ ✓                   |                       |                |                                       |                       |                       |                            | ✓ ✓      |
| BuzzFace     | ✓ ✓                   |                       | ,              |                                       | ✓ ✓                   |                       |                            | ✓ ✓      |
| FacebookHoax | <ul> <li>✓</li> </ul> |                       |                |                                       | <ul> <li>✓</li> </ul> |                       |                            |          |
| FakeNewsNet  |                       | <ul> <li>✓</li> </ul> |                |                                       |                       | <ul> <li>✓</li> </ul> |                            |          |

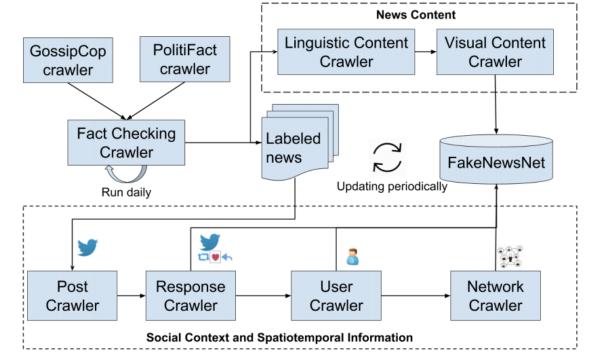
Table 1: Comparison with existing fake news detection datasets





### Data Integration

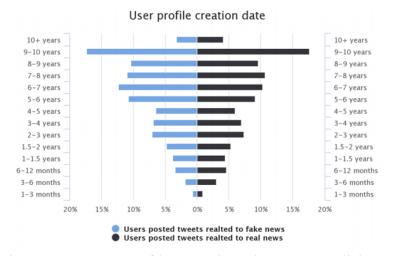
- News Content: we utilize fact-checking websites to obtain news
  - contents for fake news and true news
- Social Context: collecting user engagements from Twitter using the headlines of news articles
- Spatiotemporal Information: spatial info and temporal data from meta data of Twitter

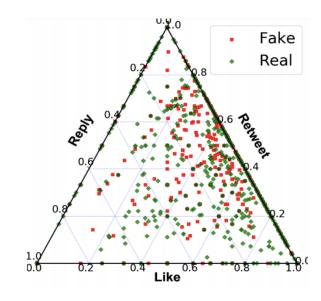




# Data Analysis

- User profiles: users who share real news pieces tend to have longer register time than those who share the fake news on average
- User engagements: fake news pieces tend to have fewer replies and more retweets; real news pieces have more ratio of likes than fake news pieces do

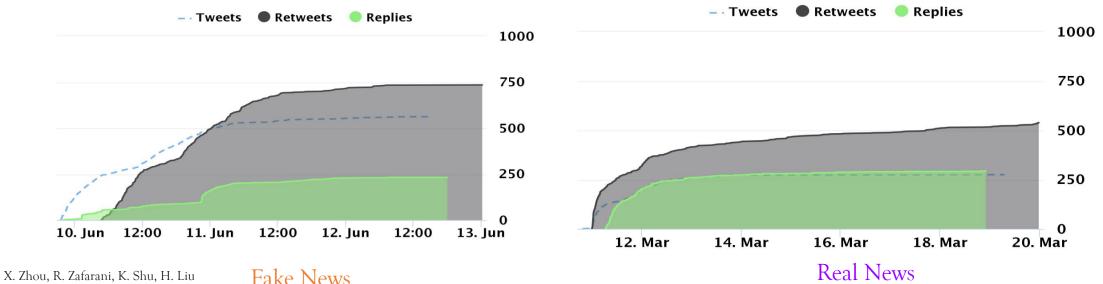








- A case study of temporal engagements for fake news and real news
  - For fake news, a sudden increase in the number of retweets and remain Ο constant beyond a short time
  - For real news, the number of retweets increases steadily Ο
  - Fake news pieces tend to receive fewer replies Ο than real news





# Potential Applications for FakeNewsNet

• Fake News Detection

- News content, social context based
- Early fake news detection
- Fake News Evolution
  - Temporal, Topic, Network, evolution
- Fake News Mitigation
  - Provenances, persuaders, clarifiers
  - Influence minimization, mitigation campaign
- Malicious Account Detection
  - Detecting bots that spread fake news





# FakeNewsTracker: A Tool for Fake News Collection, Detection, and Visualization

# Kai Shu, Deepak Mahudeswaran, and Huan Liu



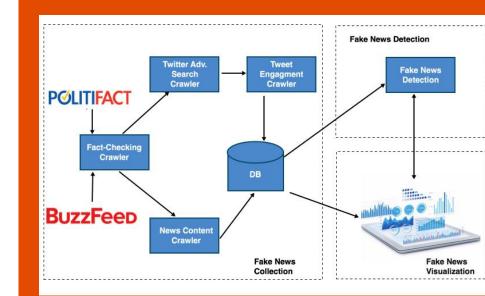
SBP 2018



SBP Disinformation Challenge Winner

http://blogtrackers.fulton.asu.edu:3 000 115 An end-to-end framework for fake news collection, detection, and visualization

- Data Collection: collecting fake and real news articles from fact-checking websites and related social engagements from social media
- Fake News Detection: finding fake news with advanced machine learning methods, such as deep neural networks
- Fake News Visualization: visualization on data attributes and model performance



16

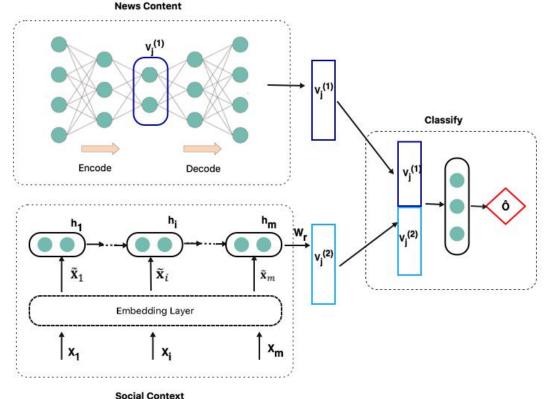


## Fake News Detection

- Detect fake news with fusion of news content and social context
  - $\circ$  News representation:

Represent news content using autoencoders

- Social engagement representation:
   Represent social engagements using RNNs
- Social Article Fusion:
- Combine both news and social engagement features to detect fake news X. Zhou, R. Zafarani, K. Shu, H. Liu





## Fake News Visualization



#### Trends on Twitter

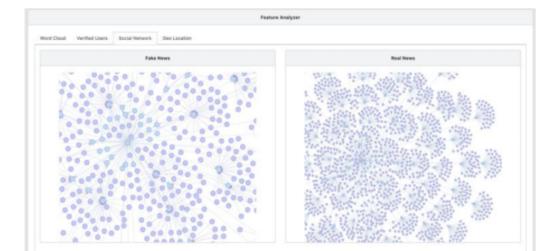


Topics of Fake news vs Real News

#### Geolocation of Fake News vs Real News



#### Social Network on Users Spreading Fake/Real news







# Recent work at DMML on Fake News Detection

- <u>Survey</u>: Fake News Detection on Social Media: A Data Mining Perspective
- Data repository: FakeNewsNet, [<u>Github</u>], [<u>Kaggle</u>], [<u>Paper</u>]
- <u>Software</u>: FakeNewsTracker
- <u>Book chapter</u>: Studying Fake News via Network Analysis: Detection and Mitigation
- Other Publications: related publications are updated at:  $1 + \frac{1}{2} = \frac$

http://www.public.asu.edu/~skai2/





# Challenges and Highlights

- Fake News Early Detection
- Identify Check-worthy Content
- Cross-domain, -topic, -language Fake News Studies
- Deep Learning for Fake News Studies



# Fake News Early Detection

Why is Fake News Early Detection is important?

- The more fake news spreads, the more likely for people to trust it
- Once people have trusted the fake news, it is difficult to correct users' perceptions

|        | Term                       | Phenomenon                              | Term                 | Phenomenon                                        |  |  |
|--------|----------------------------|-----------------------------------------|----------------------|---------------------------------------------------|--|--|
|        | Attentional bias           | <b>Exposure frequency -</b> individuals |                      |                                                   |  |  |
| ence   | Validity effect            | tend to believe information is correct  | Backfire<br>effect   | Given evidence against their beliefs, individuals |  |  |
| ne     | Echo chamber effect        | after repeated exposures.               | ejjeci               | can reject it even more strongly                  |  |  |
| influe | Bandwagon effect           | <b>Peer pressure -</b> individuals do   | Conservatism<br>bias | when presented with new evidence.                 |  |  |
| al     | Normative influence theory | something primarily because others      |                      |                                                   |  |  |
| Socia  | Social identity theory     | are doing it and to conform to be liked | Semmelweis<br>reflex |                                                   |  |  |
|        | Availability cascade       | and accepted by others.                 | refies               |                                                   |  |  |





### Fake News Early Detection How to achieve Fake News Early Detection?

- I. Verification Efficiency, e.g., compare knowledge in the framework that
  - Knowledge graphs with timely ground truth
  - To-be-verified news content is check-worthy Check-worthy content identification
- II. Feature Compatibility, e.g., to extract features that can capture
  - The generality of deceptive content styles across domain, topic, and language<sup>9</sup>
  - The <u>evolution</u> of deceptive content styles *within* domain, topic, and language
- III. Information Availability, e.g., detect fake news with limited propagation information

<sup>9</sup>W. Yaqing, et al., EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection. KDD'18





### Check-worthy Content Identification How to measure Check-worthy content?

 $\mathbf{f} \mathbf{\nabla} \mathbf{R} \mathbf{\Theta} \mathbf{\Theta}$ 

- I. News-worthiness or Potential Influence on the Society, e.g., if it is related to national affairs
- II. Spammer Preference, i.e., news historical likelihood of being fake

#### Donald Trump's file

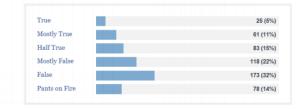


#### Republican from New York

Donald Trump was elected the 45th president of the United States on Nov. 8, 2016. He has been a real estate developer, entrepreneur and host of the NBC reality show, "The Apprentice." Trump's statements were awarded PolitiFact's 2015 Lie of the Year. Born and raised in New York City, Trump is married to Melania Trump, a former model from Slovenia. Trump has five children and eight grandchildren. Three of his children, Donald Jr., Ivanka, and Eric, serve as executive vice presidents of the Trump Organization.

Syracuse University

#### The PolitiFact scorecard



(a) (Expert-based) PolitiFact: the PolitiFact scorecard

Related Studies:

- N. Hassan, et al. Detecting Check-worthy Factual Claims in Presidential Debates, CIKM'15
- N. Hassan et al., Toward Automated Fact-Checking: Detecting Checkworthy Factual Claims by ClaimBuster, KDD'17

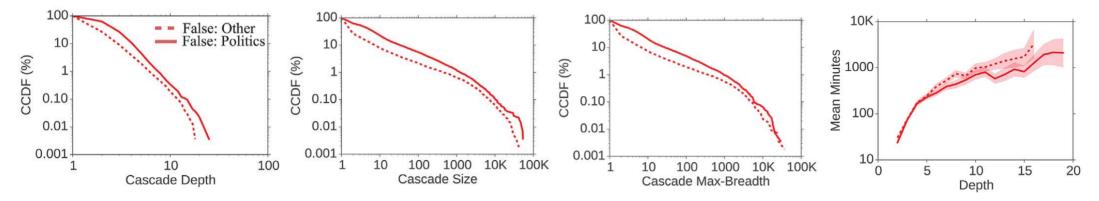


### Syracuse University

# Cross-domain, -topic, -language

How to facilitate Cross-domain, -topic, -language Fake News Studies?

- I. Develop fake news datasets containing cross-domain, -topic, -language data
- II. Explore patterns among fake news within different domains, topics and languages



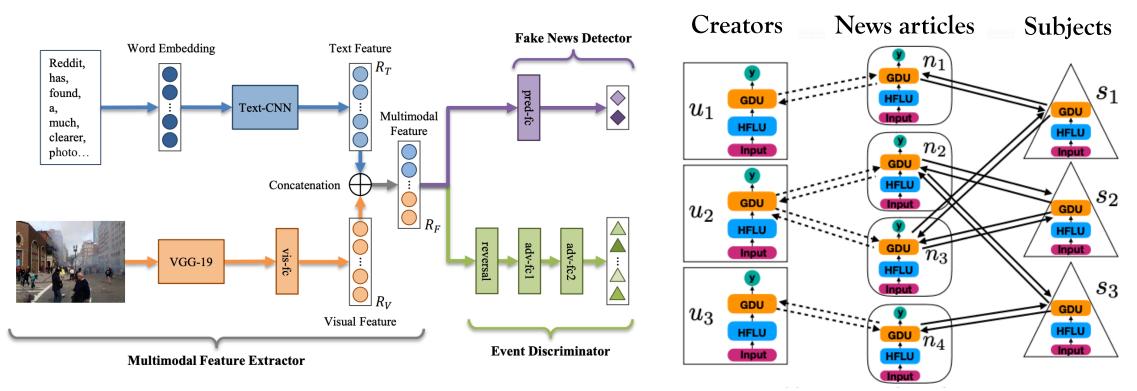
III. Develop techniques enables cross-domain, -topic, -language fake news detection

Figures are from: S. Vosoughi, et al. The spread of true and false news online. Science, 2018





# Deep Learning for Fake News Detection



W. Yaqing, et al., EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection. *KDD*'18 J. Zhang, et al. Fake News Detection with Deep Diffusive Network Model, arXiv: 1805.08751, 2018

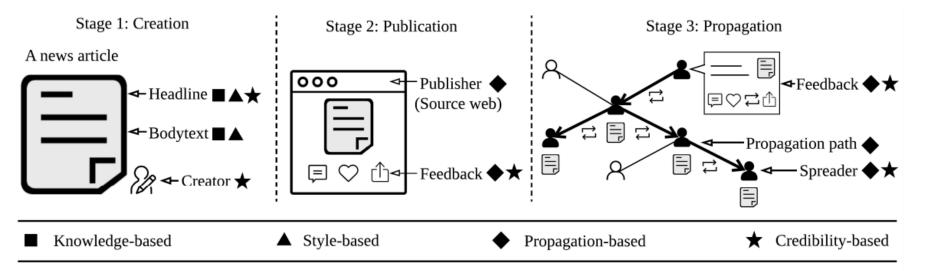




Summary

I. Fundamental Theories encourage interdisciplinary research of fake news

II. Fake News Detection from various perspectives



### III. Challenges and Highlights for potential research opportunities for fake news studies